
CS262A Advanced Topics in Computer Systems
DOT3 Radio Stack

Jaein Jeong
Computer Science

UC Berkeley

jaein@cs.berkeley.edu

Sukun Kim
Computer Science

UC Berkeley

binetude@cs.berkeley.edu

ABSTRACT
Our network stack is implemented on a new platform of wireless
sensor DOT3 which has better coverage and reliability than the
current generation of wireless sensor, MICA. In outdoor tests, the
packet receiving rate was close to 100% within 800ft and was
reasonably good up to 1100 ft. This was made possible by using
an error correction code and a reliable transport layer. Our
implementation also allows us to choose a frequency among
multiple channels. Using multiple frequency as well as reliable
transport layer we could achieve high packet receiving rate by
paying additional retransmission time when collision was
increased with more number of sensor nodes. Being written in
nesC programming language, our network stack is compatible
with the latest generation of TinyOS code.

Keywords
TinyOS, nesC, radio stack and reliable communication.

1. INTRODUCTION
What is a wireless sensor? A wireless sensor is a tiny

computer node that can sample analog signals and communicate
with other nodes in wireless, especially in radio. Since the
sampled data in the sensors is not useful in itself, it needs to be
transferred to the host machine for analysis. NEST project in UC
Berkeley is such an effort to make wireless sensors and apply
them in a number of fields. The wireless sensors have evolved
several generations and we are using MICA platform which can
communicate with other nodes of the same platform with its on-
board radio chip. With this multi-channel ADC and radio
capability, MICA has served as a reasonable research tool for
understanding wireless sensors and a number of practical
applications on them. However, MICA was not enough for any
large scale applications due to its short range and rather unreliable
radio communication as shown in Figure 1.

As it is mentioned in the beginning, the data in each sensor
needs to be forwarded to the host machine for persistent storage
and further analysis. In an application that covers large area the
reliable radio communication is more important because many of
wireless sensors cannot send packets directly to the host machine
and have to rely on intermediate nodes to pass the packets. We
expect that wireless sensors of improved radio capability will
allow us to build large area applications with small number of
sensor nodes and host machines.

DOT3, shown in Figure 2(a), is a new hardware platform
made with CC1000 radio chip. Since DOT3 is optimized for form
factor (a quarter size compared to MICA of two AA battery size),
some functions in MICA are missing. To name a few, accurate
low frequency crystal for UART communication and power
amplifier for longer battery lifetime. Thus, a variation of DOT3
having all the functions in MICA was made and this is called
MICA2 platform (Figure 2(b)). However, MICA2 is a bit bigger
than MICA platform. MICA2 platform is used to interface DOT3
to the host machine with its accurate UART clock and DOT3 is
used for mobile applications with its small form factor. Since
DOT3 and MICA2 has the same radio chip CC1000, they share
the same network stack code. Our work is to implement a radio
stack on the new hardware platform and evaluate its performance.

Figure 2(a). A DOT3 node and CC1000 radio chip (right)

Figure 1. A MICA node and its outdoor range

Figure 2(b). A MICA2 node

Outdoor range of MICA (256 packets)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

0 100 200 300 400
Distance (ft)

R
at

io
 o

f r
ec

ei
ve

d
pa

ck
et

s

One side of Cory Hall (240 ft)

2

2. Background and Related Work
2.1 TinyOS and its programming model

The wireless sensors used in Berkeley are based on a brand
of embedded processor ATMega 103L 1 . It comes with basic
development tool called AVRGCC that supports plain C
programming language and some library functions for hardware
access. Tiny OS is the software that runs on top of AVRGCC
providing modular programming interface and useful standard
services. Application programmer can easily develop a wireless
sensor application using these components.

In TinyOS 2 , components are defined using modules. A
module can have states using its member variable and
communicate with other modules. The communication between
two modules is bidirectional: module A can access methods of
module B directly by calling the methods of B and module B can
notify module A of any changes in its state by signaling events
such as clock ticks and packet arrivals.

A mechanism is needed to figure out which methods are
called and which methods are triggered by events. In TinyOS, this
is defined in the interface which is separate from an
implementation. With an interface, we can change the component
just by changing the name of an implementation linked to the
interface. Figure 3 shows the communication between two
modules A and B. Module A calls a method foo() in module B by

call intB.foo()

and module B notifies any events to the module A’s event handler
by

signal intfB.bar()

Module A has event handler bar() and it is invoked whenever B
signals an event.

Figure 3. Communication in TinyOS modules

1 MICA platform uses ATMega 103L and DOT3 and MICA2 use

ATMega 128L processor. Since ATMega 128L is backward
compatible to ATMega 103L, we use ATMega 103L as a
representative.

2 We are following the programming model and the convention in
TinyOS version 1.0. nesC is the programming language used in
TinyOS since version 1.0.

2.2 Network stack in TinyOS
Like many other network protocols, Tiny OS provides

communication to applications using multiple layers. Figure 4
shows the network stack of MICA.

Figure 4. MICA Network Stack

An application sees the radio as a service through which it
can send and receive data in fixed sized packet level. Right below
the application layer, GenericComm and AMStandard
components multiplex messages for different applications using
Active Message number (AM number) , which is a kind of port
number. The sender specifies the AM number when it sends a
packet. On the receiver side, the event is notified to the processes
which are registered to that AM number. In addition, AMStandard
multiplex messages to different media (radio and UART) using
the destination address and provides the common interface. We
can think of GenericComm and AMStandard as a transport layer
which supports best effort delivery and as a process to process
communication.

Compared to a PC or a workstation which is connected to
global network such as Internet, wireless sensors operate within a
local domain with its locally unique address. Thus, TinyOS
network stack doesn’t have network layer which route packets
across different local networks.

Most of TinyOS network stack is related to the link layer.
Since the underlying radio chip has byte level interface to the
microprocessor, a packet needs to be decomposed before they are
sent on one end and a packet needs to be reconstructed from the
received bytes on the other end. This is implemented in
MicaHighSpeedRadioM. After that, each byte is sent or received
through serial peripheral interface (SPI) which gives byte level
abstraction over serial links. Since data is sent as bytes, the
receiver side need to find the start of a packet. This is done by
sending a specific sequence of bytes which is different from
normal data byte patterns. This specific sequence of bytes are
called preamble and start symbol. The receiver assumes the
beginning of a packet when input bytes match preamble and start
symbol. Optionally, the data bytes can be encoded with an error
correction code before they are sent over the radio for integrity. In
TinyOS, a single error correction and double error detection
(SECDED) code is used as an error correction code.

Finally, the radio chip needs to be initialized with correct
parameters and this is highly dependent on the underlying radio
chip.

Multiplexing messages for different

applications and media (radio, UART)

Calculates CRC.

Sends a packet in bytes and

packetize received bytes.

Encode/decode

data for ECC

Sends and receives

data in bytes and

notifies data arrival

Application

GenericComm

AMStandard

RadioCRCPacket

MicaHighSpeedRadioM

ChannelMonC

Finding the beginning

of a packet (preamble

and start symbol)

SpiByteFifoC SecDedEncoding

module A {

 result_t intfA.foobar () {

 call InterfaceB.foo();

 …

 }

 event result_t intfB.bar(int data) { … }

}

module B {

 …

 result_t IntfB.foo() {

 …

 signal IntfB.bar(data);

 …

}

call

signal

interface intfB {

 command result_t foo();

 event result_t bar(int data);

 …

3

2.3 Earlier works in DOT3
Our project is based on some of the earlier works. Jason Hill

wrote a preliminary version of network stack for DOT3 in
TinyOS v0.6 style. This version of network stack supports AM
number multiplexing and packet framing.

CC1000 can operate in three different bands of frequencies:
433MHz, 866MHz and 900MHz ranges. Each band requires
different values for external components (capacitors and inductors
used in filter and resonating circuit) and initialization parameters.
Since the values for these external components are determined by
physical components, a DOT3 node can operate in only one band
once its external component values are fixed. The decision which
band to use is determined by the coverage and the number of
legally usable channels. 900MHz range is preferable for its
relatively large selection of channels and 433MHz is better for its
longer range it covers.

Jason Hill initially wrote his network stack in 900 MHz
range and Crossbow technology modified it to support 433MHz
range.

3. Design of Radio Stack
From the earlier works by Jason Hill and Crossbow

technology, we found some chance of improvement:

• We need to write the network stack in nesC
programming language, which is compatible with the
current generation of TinyOS.

• We need to add error correction code like single error
correction and double error detection (SECDED) to
protect data from transient errors.

• We need to utilize multiple channels of CC1000 radio
chip.

• We can support reliable communication.

Starting from the existing network stack, we implemented a
network stack for DOT3 as shown in Figure 5:

Figure 5. DOT3 Network Stack

First, we need to look at the data flow of our network stack.
While data is transferred in packets in application layer,

underlying radio only provides byte level and serial interface.
Section 3.1 explains how we can send and receive data in bytes to
the radio chip and how we can configure the chip.

Then, a packet needs to be decomposed into bytes before
being sent and a new packet needs to be reconstructed from
incoming bytes. Section 3.2 explains the steps for packet framing.

Once we have data in packets, we can use CRC to find any
errors in packet level. Before sending a packet, RadioCRCPacket
calculates CRC for the data bytes except the last two bytes used
for CRC. Then, it appends CRC bytes after the data bytes. When
it receives a packet, it calculates CRC for the data bytes. It relays
the packet to the upper layer only when the calculated CRC
matches the CRC value appended at the end of the packet.

In the existing network stack implementations, a packet was
sent to each application after GenericComm module multiplexes a
packet according to the application specific identifier called AM
ID (Active Message ID). We implemented another layer
ReliableComm on top of GenericComm for reliable
communication and this is explained in section 3.3.

3.1 Interface to the radio chip.
3.1.1 ATMega 103L external device interface

ATMega 103L microprocessor interfaces to external devices
using data ports, and the radio chip is considered as one of them.
Each data port of the microprocessor is 8-bit wide and can be read
or written in bytes (can be written only when the device is output
only). AVRGCC supports a group of library functions that access
data ports. Since the notations of these functions are not easy to
understand, TinyOS provides macros to assign mnemonics to the
function calls. And this is listed in Table1.

Table 1. List of functions that access external devices
AVRGCC
function

Description

sbi(port, bit)
Sets the bit for the pin as ‘1’ and
TOSH_SET_***_PIN() is the TinyOS macro.

cbi(port,bit)
Clears the bit for the pin as ‘0’ and
TOSH_CLR_***_PIN() is the TinyOS macro.

outp(byte,reg) Writes a byte to the register.

inp(reg) Reads a byte from the register.

outp(byte,data
direction reg)

Determines the direction of data port pins. For each
pin, ‘1’ sets the direction as output and ‘0’ sets it as
input.

TOSH_MAKE_***_OUTPUT and
TOSH_MAKE_***_INPUT are the TinyOS macros.

3.1.2 Data interface
Even though data can be transferred using bits, its

programming interface becomes rather complicated because the
data needs to converted between a byte and bits using bitwise
operation.

Multiplexing messages for

different applications and

media (radio, UART)

Calculates CRC.

Encode/decode data

for ECC

Retransmit dropped packets

using Acknowledgement

Bits

Bytes

Packets

Sends and receives data

 in bytes and notifies

data arrival

Setting the parameters for

CC1000 radio chip

ReliableComm

GenericComm

RadioCRCPacket

Chipcon

SpiByteFifoC

SecDedEncoding

ChannelMonC

Application

Radio

Packet decomposition

and reassembly

*:newly made or modified from
 existing TinyOS network stack

* *
*
*

*

4

ATMega 103L processor gives a byte level interface, which
is called serial peripheral interface (SPI), to transfer data to
external devices and this is shown in Figure 6.

Figure 6. Interfacing microprocessor to the radio

SPI has a byte buffer (SPDR: SPI data register) and an
outgoing data byte waits here until all the bits are sent. And SPI
assembles incoming bits into a byte in the buffer. Since there is
only a single buffer, either a send or a receive can be done at a
time. SPI can be checked whether it has an incoming byte or not
with its status register (SPSR): the most significant bit of SPI
becomes high when there is an incoming byte in the buffer and it
becomes low otherwise. SPI can be switched between send and
receive mode by changing data direction of data pin (Bit-3 of port
B). Finally, data should be read or written at the same rate with
that of external device. CC1000 radio chip is synchronized to the
microprocessor with the SPI clock and the clock triggers an
interrupt at regular interrupt. This is done by connecting SPI clock
output pin of the microprocessor (Bit-1 of port B) to the data
clock pin of the radio chip. The SPI clock interrupt is triggered
while the interrupt is enabled and stops when the interrupt is
disabled. HPLSpiC is a module that gives easy to understand
programming interface. Table 2 summarizes this subsection.

Table 2. CC1000 data interface to ATMega 103L processor
ATMega

103L Description CC
1000

SPSR

Most significant bit (bit-7) is ‘1’ if there
is incoming byte, ‘0’ otherwise
HPLSpi methods:
is_empty()

SPDR

Write: send a byte to CC1000
Read: read a byte from CC1000
HPLSpi methods:
write_byte() and read_byte()

SPCR

Enables SPI clock interrupt (write
0xC0) or disables it (write 0x40).
HPLSpi methods:
enable_intr() and
disable_intr()

Port B
bit-3

Switches transmit/receive mode
HPLSpi methods:
txmode() and rxmode()

DIO

Port B
bit-1

Connects SPI clock to the data clock of
CC1000 DCLK

3.1.3 Serial configuration interface
The microprocessor still needs to communicate with the

radio chip to configure or monitor the status of it. The radio chip
needs to be configured when it starts to operate or it needs to
change its property, such as changing frequency (explained in the
next section) and power consumption level. CC1000 exposes
three pins (PALE, PCLK and PDATA) for this purposes.

Table 3(a). CC1000 configuration interface to ATMega 103L
ATMega

103L TinyOS macros CC 1000

Port D
bit-5

TOSH_SET_POT_SELECT_PIN()
TOSH_CLR_POT_SELECT_PIN() PALE

Port D
bit-6

TOSH_SET_RFM_CTL1_PIN()
TOSH_CLR_RFM_CTL1_PIN() PCLK

Port D
bit-7

TOSH_SET_RFM_CTL0_PIN()
TOSH_CLR_RFM_CTL0_PIN()
TOSH_READ_RFM_CTL0_PIN()

PDATA

 These pins are mapped to data port pins (port D bit 5,6 and

7). By setting or clearing these pins, the microprocessor can send
a sequence of bits (control register address, a byte data and a bit
representing whether the operation is write or read) as it is shown
in the following figure:

Figure 7. Steps to write or read CC1000 control registers

This is implemented as init(), write() and read() in
HPLChipconC module.

3.1.4 Using multiple channels
Whereas TR1000 radio chip in MICA operates at a fixed

frequency of 916.5 MHz, CC1000 can be set up to operate at one
of the three different bands (433 MHz, 868 MHz and 900 MHz).
The band is determined by selecting capacitor and inductor values
for the resonator and the filter in the wireless sensor board.

 Within each band, we can select one channel at run time
among a number of frequencies. The purpose of selecting
channels is to reduce any interference from neighboring sensor
nodes or other wireless devices. The 900 MHz band is preferable
for its wider range frequencies that can be selected where as 433
MHz has longer range due to its longer wavelength. We chose
433 MHz band in favor of longer range.

For the CC1000 radio chip to operate at a specific frequency,
it needs to be configured with the correct frequency words and
clock divisor byte. CC1000 transmits and receives at different
frequency and these frequencies are represented by two 24-bit

ChipconM
(for configuration)

SpiByteFifoC
(for data transfer)

Micro-
processor

Radio

Byte
Buffer

Status
Reg

Write
Byte

Read
Byte

Buffer
filled?

SPI
Interrupt

PALE PDATA

DataSPI Clock

PCLK

PCLK

PDATA

PALE

6 5 4 3 2 1 0 W 7 6 5 4 3 2 1 0

Data byteWrite modeAddress

PCLK

PDATA

PALE

6 5 4 3 2 1 0 R 7 6 5 4 3 2 1 0

Data byteRead modeAddress

5

frequency words. These frequencies are generated by dividing the
frequency synthesizing clock (we are using 14.7456 MHz) with
the clock divisor byte. These values are set up in ChipconC
module. A recommended values are listed in [3], but none of them
worked for 433MHz band. We found 4 working channels by
measuring signal strength for different values within 433 MHz
and 435 MHz. Here are the channels we found:

Table 4. Channels available for DOT3 in 433MHz band
 CH 1 CH 2 CH 3 CH 4 MICA

Frequency
(MHz) 433.02 433.64 434.20 434.71 916.50 T

X
CC1000 reg 4-6 57f785 581785 583785 585785 -

Frequency
(MHz) 433.09 433.71 434.27 434.78 916.50 R

X
CC1000 reg 1-3 580000 582000 584000 586000 -

CC1000 reg 12
Divisor (PLL) 60 60 60 60 -

Output Power
(dBm) -45 -45 -47 -47 -52

Figures 8 (a) and (b) show the waveforms in Spectrum
analyzer when the configuration is correct and wrong. In Figure
8(a), all the external components such as resonator and filter are
set to 433MHz band and the control register of CC1000 is
correctly configured. The waveform has the peak around 433MHz
and its peak output power had around -45dBm using inducting
antenna in Spectrum analyzer input. In Figure 8(b), control
registers are set to 433MHz, but the inductor in the resonator is
set to the value used in 900MHz band. Since this resonator value
doesn’t match the other external components and the
configuration value, it results in the peak somewhere middle
between 433MHz and 900MHz and its output power is much
weaker that it should be. Actually, initial build of 433MHz DOT3
nodes had this bug and it was one of difficulties in early stage of
our project.

3.2 Packet decomposition and reassembly
Packet decomposition and reassembly is done in

ChannelMonC with the help of SpiByteFifoC module. SPI is
synchronized to the microprocessor with the clock and generates
an interrupt at regular interval.

At each interrupt invocation, the interrupt handler SIG_SPI
in SpiByteFifoC module is called. Then, we can determine we can
send or receive a byte by looking at the control register (SPSR) as
it is shown in Figure 9:

Figure 9. State Transition diagram for
packet decomposition and reassembly

Initially, the state is in IDLE state. If no incoming bytes are
available, ChannelMonC sends a packet. Since radio chip
transfers data in bytes, we need to tell the beginning and the end
of a packet. This is done by having a special sequence of bytes
(preamble and start symbol) in the beginning and the fixed
number of bytes after that. After sending preamble and start
symbol, ChannelMonC sends data bytes. Data bytes can be sent
as they are or can be sent after being encoded with error
correction code for integrity. We used SecDedEncoding TinyOS
module which implements a single-error-correction-and-double-
error-detection (SECDEC) code. The version of ChannelMonC
with error correction code is ChannelMonEccC.

When there is an incoming byte, ChannelMonC reads the
byte and see whether the sequence of bytes received up to now
matches the preamble. Then, it goes to FIND_SYNC state. If the
next incoming bytes match the start symbol, it goes to READING
state. After reading the fixed length of data (36 bytes is default),
ChannelMonC notifies the arrival of a packet to RFCommM
module.

3.2.1 Error correction using a SECDED code
SecDedEncoding module takes 1 byte data and generates 3

byte output. Since preamble and start symbol are 7 bytes long and

-20
dBm

-30

-40

-50

-60

-70
433MHz 434MHz432MHz

Figure 8(a). Waveform when configuration is correct.

-20
dB

-30

-40

-50

-60

-70
780MHz 785MHz 775MHz

Figure 8(b). Waveform when resonator value is
misconfigured.

IDLE
Send a packet

READING
Receive a byte FIND_SYNC

Detected Preamble

Detected
Start Symbol

Not detected
Start Symbol

Init

A packet
is received

6

the data in a packet is 36 bytes long, a packet sent using
SecDedEncoding has 31% of utilization (= 3637

367
×+
+). 3 bytes is

not the optimal size when we encode 1 byte.

According to even-odd code explained in [1], when we have
d-data bits and r-parity bits, r should meet the following
inequality.

∑
≤−≤

+≥







−

r

ri
rd

i
r

121 12

For d = 8, r = 5 is the smallest number that meats the inequality.

135816
5
5

3
5

1
5

=+≥=







+








+









Thus, we outputs 13-bits for 1-byte input. The reason why
existing SECDED implementation used more bits (24-bits) is they
tried to balance the number of 0’s and 1’s in a bit sequence (bit
stuffing).

According to [7], 0 or 1 is detected by comparing received
bytes with the average voltage level up to now. A long sequence
of 0’s or 1’s changes the average voltage level from the center
and detection of 0 and 1 may not be correct. This bit stuffing is
needed in NRZ encoding which sends high for 1 and low for 0.
CC1000 provides not just NRZ encoding but also Manchester
encoding. Manchester encoding avoids long sequences of 0’s or
1’s by sending low-to-high or high-to-low. However, we haven’t
yet found the economical error correction code that can be used in
Manchester encoding.

3.3 Reliable Transport Layer
We wanted reliable communication. But we also wanted

compatibility and ease of use. So we designed to give the same
interface as that of existing best-effort transport layer. As shown
in Figure 10, we designed reliable transport layer so that it can be
inserted between best-effort transport layer and application layer
without any significant modification of application.

Figure 10. Compatible interface of reliable transport layer

We also wanted light-weight layer. Compatible and light-
weight approach made us to implement connection-less
communication. Interface of existing best-effort transport layer
supports only connection-less communication. In the reliable
transport layer, Connection information is managed globally.

To guarantee reliable communication, we mainly used
acknowledgement and retransmission. Packet structure came to
incorporate more information. Sender and receiver use this
information and react properly according to it.

3.3.1 Reliable Message
For reliable communication, additional meta-data (source

address, acknowledgement number) needs to be included in each
packet. The packet size is 36 bytes. 7 bytes are already used by
lower layers for meta-data. And 29 bytes are used as date field. 4
more bytes (2 for source address, 2 for acknowledgement) are
taken from data field for meta-data in the reliable transport layer.
Now the length of data field decreased from 29 bytes to 25 bytes
(13.8 percent of loss). Sender gets a usual packet from upper
application layer. And it realigns data, adds source address and
acknowledgement number, and sends it to lower best-effort
transport layer. Receiver also does the same conversion. Packet
structure is shown in Figure 11. The use of additional meta-data
is transparent to applications except the decreased size of data
field.

Figure 11. Packet structure for reliable transport layer

3.3.2 Sender
Sender is a finite state machine. When sender gets a packet

from upper application layer, it adds source address and
acknowledgement number as shown in the Figure 11, realigns
data, and passes the packet to the lower best-effort transport layer.

If the sender receives acknowledgement from receiver, it
reports success to the upper application layer. If it does not
receive acknowledgement until time out, it retransmits the
unacknowledged packet. The amount of waiting time is a random
number between T and 2T. After N successive time-outs, sender
reports failure to the upper application layer.

For simplicity, sender uses block-and-wait strategy. Sender
only needs to remember current receiver’s information. Figure 12
shows main part of state diagram of the sender.

Since there is no queue in the lower layer, if sender tries to
send a packet while the receiver of the same node is also replying
by sending acknowledgement, the packet of sender can be lost. So
buffer of size 1 is used for sender. When acknowledgement is
under process, sender saves the packet in buffer and transmits
after the receiver of that sensor completes acknowledgement.

Application

Best effort transport
Send Receive

Application

Reliable transport

Send Receive

Header (7)

Data (29) Header (7)

Data (25)

AckNum (2) Source (2)

Reliable Packet

Raw Packet

Best effort transport
Send Receive

7

Figure 12. Schematic of reliable transport

3.3.3 Receiver
Receiver is also a finite state machine. When receiver gets

packet from the lower best-effort transport layer, it looks at source
address and acknowledgement number. If it is a new packet, it
sends acknowledgement and passes the packet to the upper
application layer. If it is a packet already received, it only sends
acknowledgement to the sender.

To decide whether the received packet is a new packet or an
already received one, it keeps connection information in the ‘Ack
table’. The table has a pair of sour address and acknowledgement
number as an entry. In case of lost acknowledgement, as in Figure
13, duplicate data packets can come. Then we should not report
the second packet, and we need table for this purpose.

Figure 13. Lost acknowledgement

Since the size of table is limited, it can not handle arbitrary
number of connection all the time. So FIFO algorithm is used to
replace entry in the table. To reduce table lookup time, reverse
chronological search is used. It looks up most recent connection
first, and then next recent connection, and so on.

3.4 Installation
TinyOS keeps program files dependent on a specific

platform under $TOSROOT/tos/platform directory. We
placed the files related to DOT3 platform under
$TOSROOT/tos/platform/mica2dot directory. In Current
1.0 version TinyOS, the path to the platform specific directories
are scanned only when the nesC compiler is built unlike 0.6
version. Thus just copying platform specific files and modifying
make files doesn’t work. These are the steps to install DOT3
specific files including network stack:

• Modify $TOSROOT/nesc/tools/ncc, $TOSROOT/nesc/
tools/ncc.in and $TOSROOT/apps/Makerules to handle
DOT3 platform. We simply copied the statements for mica
platform as mica2dot and changed the name mica to
mica2dot.

• Copy files specific to DOT3 platform including our radio
implementation under
$TOSROOT/tos/platform/mica2dot

• Delete existing installation of nesC compiler and make
install nesC compiler. This is done by
rm /usr/local/bin/ncc
cd $TOSROOT/nesc
make
su
make install

4. Evaluation
We set up two kinds of experiments to see the effectiveness

of our network stack implementation. In outdoor experiments, the
sender sends a number of packets and the receiver counts how
many packets it received from the sender as we moves the sender
far from the receiver. We did outdoor test in the middle of
Berkeley campus as shown in Figure 14:

Figure 14. Locations of outdoor experiments

In the indoor experiments, we had senders and receivers send
and receive packets in a short distance as we vary number of
senders or number of channels used. We used the ratio of
successfully received packets as an indicator of effectiveness of
each transmission method.

4.1 Comparison with MICA
Since the immediate goal is to make DOT3 work as well as

MICA, we set up an experiment to compare our DOT3 network
stack implementation with that of MICA. We measured the packet
receiving rate and the transmission time for MICA and DOT3 as
we vary the distance between the sender and the receiver. Both
implementation used SECDED non-retransmission scheme.

Figure 15. Ratio of received packets (DOT3 vs. MICA)

Ready

Wait Send Done

Time Out

Begin Success (Ack received)
Fail (Repeated timeout)

Sender Receiver

Data

Ack

Src #1 Acknum #1
Src #2 Acknum #2

Src #n Acknum #n

Ack table

Send

Dot3 vs. MICA (256 packets)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

0 200 400 600 800 1000 1200 1400
Distance (ft)

R
at

io
 o

f r
ec

ei
ve

d
pa

ck
et

s

MICA
Dot3

Sender Data

Ack

Data

Time out

Receiver
0ft 300ft

600ft 900ft 1200ft

8

Due to the underlying radio chip, DOT3 network
implementation produced better properties: close to 100%
receiving rate up to 800 ft and more than three times the coverage
(1200 ft vs. 350 ft). However, the transmission time of DOT3 was
slower than that of MICA. Even though we consider the twice
slower transfer rate of DOT3 (19Kbps vs. 40Kbps), our DOT3
radio implementation was more than twice slower (60sec vs. 9sec
for 512 packets). This is because we used slower interrupt handler
than that in MICA (SPI instead of timer interrupt).

4.2 Effects of error correction code
To see the effectiveness of using error correction code, we

measured the packet receiving rate for the two implementations:
the one with error correction code (SECDED) and without it.

Figure 16. Ratio of received packets (ECC vs. non-ECC)

As it is shown in Figure 16, the packet receiving rate
decreased as the sender moves away from the receiver, especially
after 500 ft. Whereas the ECC implementation was more resilient
to errors and had better packet receiving ratio up to its limit (1200
ft).

4.3 Effects of retransmission
To see the effectiveness of retransmission, we set up the two

experiments. In the first experiment, we vary the distance between
the sender and the receiver for different implementations: the
implementation with no retransmission and the ones with 2,3 or 5
retransmissions. All implementations used SECDED for integrity.
In the second experiment, we located multiple senders (1, 2 or 4)
and a receiver closely to see the effects of retransmission when
the collision rate is different. We measured the packet receiving
rates and the transmission time for two extreme cases: no
retransmission and 5 retransmissions.

Figure 17. Ratio of received packets (Non-retransmission vs.

Retransmission implementations)

In the first experiment, retransmission was slightly better
than the best effort transmission. The difference between three
retransmission schemes was not that noticeable except that
retransmission 5 could receive the message all other methods
failed at 900 ft. We find this was possible because radio waves
from the sender took different paths somehow while the sender
tries to retransmit the packets.

Figure 18(a). Ratio of received packets with multiple senders

Figure 18(b). Time to transmit packets with multiple senders

The effects of retransmission in a closely populated area was
very noticeable. It reduced most of the packet drops due to
collision with increased transmission time. This shows that

Transmission time on collision (128 packets per node)

0
20
40
60
80

100
120
140

1 2 3 4
Number of senders

Ti
m

e
to

 c
om

pl
et

io
n

(s
)

Best Effort
5 Retransmission

Collision test (128 packets per node)

0%

20%

40%

60%

80%

100%

1 2 3 4
Number of senders

Ra
tio

 o
f s

uc
ce

ss
fu

lly
re

ce
iv

ed
 p

ac
ke

ts

Best Effort
5 Retransmission

The effectiveness of retransmission (256 packets)

0%

20%

40%

60%

80%

100%

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

Distance (ft)

R
at

io
 o

f r
ec

ei
ve

d
pa

ck
et

s

Best Effort
Retransmit 2
Retransmit 3
Retransmit 5

The effectiveness of ECC (256 packets)

0%

20%

40%

60%

80%

100%

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

Distance (ft)

R
at

io
 o

f r
ec

ei
ve

d
pa

ck
et

s

Best Effort
Best Effort w/o ECC

9

packets are very likely to be dropped when multiple nodes are
sending packets in bursts and the packet drops can be avoided
with retransmission.

As the rate of collision gets higher, retransmission takes
more time, because current version of retransmission does not
consider collision condition.

4.4 Effects of using multiple channels
In this experiment, we prepare 8 nodes, and divided them

into 4 groups, each of which is composed of one sender and one
receiver.

We measured the packet receiving rates and the transmission
time for non retransmission implementation and 5 retransmission
implementation with four senders. We varied the number
channels used(1, 2 and 4) to see the effects of multiple channels
for the two implementations.

Figure 19(a). Ratio of received packets with multiple channels

Figure 19(b). Time to transmit packets with multiple channels

The results show that using multiple channels was more
effective to non-retransmission implementation than
retransmission implementation. This is expected from the results
of section 4.2 in that retransmission received most of the packets
whereas non-retransmission got only 10% of the packets.

Using multiple channels also helped the retransmission time.
It paid smaller amount of transmission time when more channels
are available. When there are less channels available, it spent
more for transmission and achieved still high packet receiving
rate. This implies that retransmission and use of multiple channels
can be beneficial for reliable packet delivery.

We can also infer that there is some interference among
channels. Otherwise, for the case of 4 channels, ratio of received
packets should be very close to 100% for best effort transport.

4.5 Overhead of reliable transport layer
To measure overhead of sender, we eliminated wait for

acknowledgement in sender side. And for 512 packets, we
measured completion time. The result is shown in Table 5.

Table 5. Time to send/receive 512 packets

Best Effort Retransmission
(5retransmission)

Retransmission
(0 retransmission)

31 sec 64 sec 32 sec

The overhead is negligible for the sender.

To measure overhead of receiver, we made receiver send
data to another sensor node. However, the two sensor node except
the receiver also interfered each other. Unfortunately we could
not get correct result. We surely expect some overhead for
receiver side, because it should send a packet for each incoming
packet while this is not needed in best effort transport.

In retransmission, every packet involves two transmissions.
This explains the reason why retransmission takes about twice
longer than best effort does.

4.6 Rayleigh fading and theoretical limit of
range

If we look at the range test results in previous Figures, the
graphs consistently had dips at 900 ft. Once the sender moves
farther from that distance, the receiver received the packets from
the sender again. This happened because radio signal is
propagated through waves. Radio waves from the sender take
paths while they travel and their phase can change when they
reflect on some obstacles. Waves of opposite phase cancel each
other and the resulting signal becomes weaker than the sensitivity
of the receiving node, thus packets cannot be heard. This
phenomenon is called Rayleigh fading and illustrated in Figure 20.

Figure 20. Rayleigh fading

More complicated devices like CDMA cellular phone use
multiple antenna of different phase to avoid problem, but we
cannot depend on this method because CC1000 has only single
antenna. However, we can around this by having intermediate
nodes between the two nodes and by having the intermediate
nodes relay the packets.

Multiple channels (128 packets per node)

0

50

100

150

200

250

300

1 2 4 (case 1) 4 (case 2)
Number of channels used

Tr
an

sm
is

si
on

 ti
m

e
(s

)

Best Effort

5 Retransmission

Multiple channels (128 pakcets per node)

0%
20%
40%
60%
80%

100%

1 2 4 (case 1) 4 (case 2)
Number of channels used

Ra
tio

 o
f r

ec
eiv

ed
pa

ck
et

s Best Effort
Retransmission

Receive

Sende

Some obstacle (e.g. building)

+

10

5. Discussion and Conclusion
As it is shown in section 4.1, our network implementation

had slower transmission time than MICA. We expect this will be
cured by using timer interrupt which is faster than the one used.

Our reliable transmission scheme was effective in reducing
packet losses, but the overhead was a bit high when there was
much collision. This is because senders still try to resend
unacknowledged packets after randomly chosen time within the
timing window of fixed size. Even though waiting time varies
within the timing window, it was not helpful when collision is
high. We expect increasing timing window size like ‘exponential
back-off’ will reduce the rate of bytes sent so that the overall
system can make progress.

In reliable transport layer, sender’s window size is 1 and this
causes the sender block and wait. Increasing window size will
reduce the waiting time, and improve transfer rate. Sender will
need ‘Ack table’ and buffers for unacknowledged packets. The
‘Ack table’ in the sender is similar to the one in the receiver. And
the receiver needs buffer to support in-order delivery.

The results in section 4.4 showed that using multiple
channels was very effective for reducing collision when multiple
senders burst packets. Currently, the channel is tuned with the
identifier (group ID) which is given at compile time. Since
channels are statically determined, performance can degenerate
into that of single channel when they are misconfigured. We
expect that dynamic frequency allocation like the frequency
hopping in Bluetooth is needed for our implementation.

We used existing SecDedEncoding module in TinyOS for
error correction code. For 1 byte data, SecDedEncoding generates
3 byte output, which is larger than the optimal value 13-bits. The
use of Manchester encoding in CC1000 gives us to chance to
transfer data with less bytes because 0-1 balancing is not needed.

We consider an application that utilizes the long range
coverage of DOT3 radio in monitoring facilities in Microlab in
UC Berkeley. Since the Microlab is heavily dependent on liquid
nitrogen in many of silicon manufacturing processes, they
monitor the status of nitrogen tanks such as nitrogen pressure and
flow. The nitrogen tanks are outside Cory Hall and connected to
the Microlab via wires (around 100 ft). These wires are not easy
to maintain and make it hard to relocate Microlab facilities. We
expect that some number of DOT3 wireless sensors can substitute
these wires that run through the building.

6. ACKNOWLEDGMENTS
Crossbow Technology helped us in fixing the hardware bugs

and configure the radio chip correctly. We also thank Jason Hill
and Phil Levis for explanation on their reference implementation,
Kris Pister, Eric Brewer, David Culler and Turgut Aytur for their
comments on our works.

7. REFERENCES
[1] M. Y. Hsiao, A Class of Optimal Minimum Odd-

weight-column SC-DED Codes, IBM J. Res Develop,
vol 14, no 4, July 1970

[2] Nelson Lee, Philip Levis and Jason Hill
MICA High Speed Radio Stack
http://cvs.sourceforge.net/cgi-
bin/viewcvs.cgi/tinyos/tinyos-1.x/doc/stack.pdf

[3] CC1000 Data Sheet
http://www.chipcon.com/files/CC1000_Data_Sheet_2
_1.pdf

[4] Programming the CC1000 frequency for best
sensitivity
http://www.chipcon.com/files/AN_011_CC1000_opti
mized_for_best_sensitivity_1_1.pdf

[5] ATMega 103L Microprocessor Data Sheet
(http://today.cs.berkeley.edu/tos/hardware/design/data
_sheets/ATMEGA103.pdf)

[6] A Software Architecture Supporting Networked
Sensors, Jason Hill. . Masters thesis, December
2000.(http://today.cs.berkeley.edu/tos/papers/TinyOS_
Masters.pdf)

[7] Computer Networks - A Systems Approach, 2nd
Edition by Larry L. Peterson and Bruce S. Davie,
Morgan Kaufmann, 2000

