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ABSTRACT 
Our network stack is implemented on a new platform of wireless 
sensor DOT3 which has better coverage and reliability than the 
current generation of wireless sensor, MICA. In outdoor tests, the 
packet receiving rate was close to 100% within 800ft and  was 
reasonably good up to 1100 ft. This was made possible by using 
an error correction code and a reliable transport layer. Our 
implementation also allows us to choose a frequency among 
multiple channels. Using multiple frequency as well as reliable 
transport layer we could achieve high packet receiving rate by 
paying additional retransmission time when collision was 
increased with more number of sensor nodes. Being written in 
nesC programming language, our network stack is compatible 
with the latest generation of TinyOS code. 

Keywords 
TinyOS, nesC, radio stack and reliable communication. 

1. INTRODUCTION 
What is a wireless sensor? A wireless sensor is a tiny 

computer node that can sample analog signals and communicate 
with other nodes in wireless, especially in radio. Since the 
sampled data in the sensors is not useful in itself, it needs to be 
transferred to the host machine for analysis. NEST project in UC 
Berkeley is such an effort to make wireless sensors and apply 
them in a number of fields. The wireless sensors have evolved 
several generations and we are using MICA platform which can 
communicate with other nodes of the same platform with its on-
board radio chip. With this multi-channel ADC and radio 
capability, MICA has served as a reasonable research tool for 
understanding wireless sensors and a number of practical 
applications on them. However, MICA was not enough for any 
large scale applications due to its short range and rather unreliable 
radio communication as shown in Figure 1. 

 

As it is mentioned in the beginning, the data in each sensor 
needs to be forwarded to the host machine for persistent storage 
and further analysis. In an application that covers large area the 
reliable radio communication is more important because many of 
wireless sensors cannot send packets directly to the host machine 
and have to rely on intermediate nodes to pass the packets. We 
expect that wireless sensors of improved radio capability will 
allow us to build large area applications with small number of 
sensor nodes and host machines.  

DOT3, shown in Figure 2(a), is a new hardware platform 
made with CC1000 radio chip. Since DOT3 is optimized for form 
factor (a quarter size compared to MICA of two AA battery size), 
some functions in MICA are missing. To name a few, accurate 
low frequency crystal for UART communication and power 
amplifier for longer battery lifetime. Thus, a variation of DOT3 
having all the functions in MICA was made and this is called 
MICA2 platform (Figure 2(b)). However, MICA2 is a bit bigger 
than MICA platform. MICA2 platform is used to interface DOT3 
to the host machine with its accurate UART clock and DOT3 is 
used for mobile applications with its small form factor. Since 
DOT3 and MICA2 has the same radio chip CC1000, they share 
the same network stack code. Our work is to implement a radio 
stack on the new hardware platform and evaluate its performance. 

 

  
Figure 2(a). A DOT3 node and CC1000 radio chip (right) 

 
 
 
 
 
 
 
 

Figure 1. A MICA node and its outdoor range 

 
Figure 2(b). A MICA2 node 
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2. Background and Related Work 
2.1 TinyOS and its programming model 

The wireless sensors used in Berkeley are based on a brand 
of embedded processor ATMega 103L 1 . It comes with basic 
development tool called AVRGCC that supports plain C 
programming language and some library functions for hardware 
access. Tiny OS is the software that runs on top of AVRGCC 
providing modular programming interface and useful standard 
services. Application programmer can easily develop a wireless 
sensor application using these components.  

In TinyOS 2 , components are defined using modules. A 
module can have states using its member variable and 
communicate with other modules. The communication between 
two modules is bidirectional: module A can access methods of 
module B directly by calling the methods of B and module B can 
notify module A of any changes in its state by signaling events 
such as clock ticks and packet arrivals. 

A mechanism is needed to figure out which methods are 
called and which methods are triggered by events. In TinyOS, this 
is defined in the interface which is separate from an 
implementation. With an interface, we can change the component 
just by changing the name of an implementation linked to the 
interface. Figure 3 shows the communication between two 
modules A and B. Module A calls a method foo( ) in module B by  

call intB.foo( ) 

and module B notifies any events to the module A’s event handler 
by 

signal intfB.bar( ) 

Module A has event handler bar( ) and it is invoked whenever B 
signals an event. 

 
Figure 3. Communication in TinyOS modules 

                                                                 
1 MICA platform uses ATMega 103L and DOT3 and MICA2 use 

ATMega 128L processor. Since ATMega 128L is backward 
compatible to ATMega 103L, we use ATMega 103L as a 
representative. 

2 We are following the programming model and the convention in 
TinyOS version 1.0. nesC is the programming language used in 
TinyOS since version 1.0. 

2.2 Network stack in TinyOS 
Like many other network protocols, Tiny OS provides 

communication to applications using multiple layers. Figure 4 
shows the network stack of MICA. 

 

Figure 4. MICA Network Stack 

An application sees the radio as a service through which it 
can send and receive data in fixed sized packet level. Right below 
the application layer, GenericComm and AMStandard 
components multiplex messages for different applications using 
Active Message number (AM number) , which is a kind of port 
number. The sender specifies the AM number when it sends a 
packet. On the receiver side, the event is notified to the processes 
which are registered to that AM number. In addition, AMStandard 
multiplex messages to different media (radio and UART) using 
the destination address and provides the common interface. We 
can think of GenericComm and AMStandard as a transport layer 
which supports best effort delivery and as a process to process 
communication. 

Compared to a PC or a workstation which is connected to 
global network such as Internet, wireless sensors operate within a 
local domain with its locally unique address. Thus, TinyOS 
network stack doesn’t have network layer which route packets 
across different local networks.  

Most of TinyOS network stack is related to the link layer. 
Since the underlying radio chip has byte level interface to the 
microprocessor, a packet needs to be decomposed before they are 
sent on one end and a packet needs to be reconstructed from the 
received bytes on the other end. This is implemented in 
MicaHighSpeedRadioM. After that, each byte is sent or received 
through serial peripheral interface (SPI) which gives byte level 
abstraction over serial links. Since data is sent as bytes, the 
receiver side need to find the start of a packet. This is done by 
sending a specific sequence of bytes which is different from 
normal data byte patterns. This specific sequence of bytes are 
called preamble and start symbol. The receiver assumes the 
beginning of a packet when input bytes match preamble and start 
symbol. Optionally, the data bytes can be encoded with an error 
correction code before they are sent over the radio for integrity. In 
TinyOS, a single error correction and double error detection 
(SECDED) code is used as an error correction code. 

Finally, the radio chip needs to be initialized with correct 
parameters and this is highly dependent on the underlying radio 
chip. 

Multiplexing messages for different 

applications and media (radio, UART) 

Calculates CRC. 

Sends a packet in bytes and 

packetize received bytes. 

Encode/decode

data for ECC 

Sends and receives 

data in bytes and  

notifies data arrival 

Application 
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AMStandard 

RadioCRCPacket 

MicaHighSpeedRadioM

ChannelMonC 
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module A { 

  result_t intfA.foobar () { 

    call InterfaceB.foo(); 

    … 

  } 

  event result_t intfB.bar(int data) { … } 

}

module B { 

  … 

  result_t IntfB.foo() { 

    … 

    signal IntfB.bar(data); 

    … 

}

call 

signal 

interface intfB { 

  command result_t foo(); 

  event result_t bar(int data); 

  … 
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2.3 Earlier works in DOT3 
Our project is based on some of the earlier works. Jason Hill 

wrote a preliminary version of network stack for DOT3 in 
TinyOS v0.6 style. This version of network stack supports AM 
number multiplexing and packet framing.  

CC1000 can operate in three different bands of frequencies: 
433MHz, 866MHz and 900MHz ranges. Each band requires 
different values for external components (capacitors and inductors 
used in filter and resonating circuit) and initialization parameters. 
Since the values for these external components are determined by 
physical components, a DOT3 node can operate in only one band 
once its external component values are fixed.  The decision which 
band to use is determined by the coverage and the number of 
legally usable channels. 900MHz range is preferable for its 
relatively large selection of channels and 433MHz is better for its 
longer range it covers. 

Jason Hill initially wrote his network stack in 900 MHz 
range and Crossbow technology modified it to support 433MHz 
range. 

 

3. Design of Radio Stack 
From the earlier works by Jason Hill and Crossbow 

technology, we found some chance of improvement: 

• We need to write the network stack in nesC 
programming language, which is compatible with the 
current generation of TinyOS. 

• We need to add error correction code like single error 
correction and double error detection (SECDED) to 
protect data from transient errors. 

• We need to utilize multiple channels of CC1000 radio 
chip. 

• We can support reliable communication. 

Starting from the existing network stack, we implemented a 
network stack for DOT3 as shown in Figure 5: 

 
Figure 5. DOT3 Network Stack 

 

First, we need to look at the data flow of our network stack. 
While data is transferred in packets in application layer, 

underlying radio only provides byte level and serial interface. 
Section 3.1 explains how we can send and receive data in bytes to 
the radio chip and how we can configure the chip. 

Then, a packet needs to be decomposed into bytes before 
being sent and a new packet needs to be reconstructed from 
incoming bytes. Section 3.2 explains the steps for packet framing. 

Once we have data in packets, we can use CRC to find any 
errors in packet level. Before sending a packet, RadioCRCPacket 
calculates CRC for the data bytes except the last two bytes used 
for CRC. Then, it appends CRC bytes after the data bytes. When 
it receives a packet, it calculates CRC for the data bytes. It relays 
the packet to the upper layer only when the calculated CRC 
matches the CRC value appended at the end of the packet. 

In the existing network stack implementations, a packet was 
sent to each application after GenericComm module multiplexes a 
packet according to the application specific identifier called AM 
ID (Active Message ID). We implemented another layer 
ReliableComm on top of GenericComm for reliable 
communication and this is explained in section 3.3. 

 

3.1 Interface to the radio chip. 
3.1.1 ATMega 103L external device interface 

ATMega 103L microprocessor interfaces to external devices 
using data ports, and the radio chip is considered as one of them. 
Each data port of the microprocessor is 8-bit wide and can be read 
or written in bytes (can be written only when the device is output 
only). AVRGCC supports a group of library functions that access 
data ports. Since the notations of these functions are not easy to 
understand, TinyOS provides macros to assign mnemonics to the 
function calls. And this is listed in Table1. 

Table 1. List of functions that access external devices 
AVRGCC 
function 

Description 

sbi(port, bit) 
Sets the bit for the pin as ‘1’ and 
TOSH_SET_***_PIN() is the TinyOS macro. 

cbi(port,bit) 
Clears the bit for the pin as ‘0’ and 
TOSH_CLR_***_PIN() is the TinyOS macro. 

outp(byte,reg) Writes a byte to the register. 

inp(reg) Reads a byte from the register. 

outp(byte,data 
direction reg) 

Determines the direction of data port pins. For each 
pin, ‘1’ sets the direction as output and ‘0’ sets it as 
input. 

TOSH_MAKE_***_OUTPUT and 
TOSH_MAKE_***_INPUT are the TinyOS macros. 

 

3.1.2 Data interface 
Even though data can be transferred using bits, its 

programming interface becomes rather complicated because the 
data needs to converted between a byte and bits using bitwise 
operation. 

Multiplexing messages for 

different applications and 

media (radio, UART)

Calculates CRC. 

Encode/decode data 

for ECC 

Retransmit dropped packets

using Acknowledgement 

Bits 

Bytes 

Packets 

Sends and receives data 

 in bytes and notifies 

data arrival 

Setting the parameters for 

CC1000 radio chip 

ReliableComm 

GenericComm 

RadioCRCPacket 

Chipcon  

SpiByteFifoC 

SecDedEncoding 

ChannelMonC 

Application 

Radio 

Packet decomposition 

and reassembly 

*:newly made or modified from 
 existing TinyOS network stack 

* * 
* 
* 

* 



 

4 

ATMega 103L processor gives a byte level interface, which 
is called serial peripheral interface (SPI), to transfer data to 
external devices and this is shown in Figure 6. 

 

 
Figure 6. Interfacing microprocessor to the radio 

 

SPI has a byte buffer (SPDR: SPI data register) and an 
outgoing data byte waits here until all the bits are sent. And SPI 
assembles incoming bits into a byte in the buffer. Since there is 
only a single buffer, either a send or a receive can be done at a 
time. SPI can be checked whether it has an incoming byte or not 
with its status register (SPSR): the most significant bit of SPI 
becomes high when there is an incoming byte in the buffer and it 
becomes low otherwise. SPI can be switched between send and 
receive mode by changing data direction of data pin (Bit-3 of port 
B). Finally, data should be read or written at the same rate with 
that of external device. CC1000 radio chip is synchronized to the 
microprocessor with the SPI clock and the clock triggers an 
interrupt at regular interrupt. This is done by connecting SPI clock 
output pin of the microprocessor (Bit-1 of port B) to the data 
clock pin of the radio chip. The SPI clock interrupt is triggered 
while the interrupt is enabled and stops when the interrupt is 
disabled. HPLSpiC is a module that gives easy to understand 
programming interface. Table 2 summarizes this subsection.  

 

Table 2. CC1000 data interface to ATMega 103L processor 
ATMega 

103L Description CC 
1000 

SPSR 

Most significant bit (bit-7) is ‘1’ if there 
is incoming byte, ‘0’ otherwise 
HPLSpi methods: 
is_empty()  

 

SPDR 

Write: send a byte to CC1000 
Read: read a byte from CC1000 
HPLSpi methods: 
write_byte() and read_byte() 

 

SPCR 

Enables SPI clock interrupt (write 
0xC0) or disables it (write 0x40). 
HPLSpi methods: 
enable_intr() and 
disable_intr() 

 

Port B 
bit-3 

Switches transmit/receive mode 
HPLSpi methods: 
txmode() and rxmode() 

DIO 

Port B 
bit-1 

Connects SPI clock to the data clock of 
CC1000 DCLK

3.1.3 Serial configuration interface 
The microprocessor still needs to communicate with the 

radio chip to configure or monitor the status of it. The radio chip 
needs to be configured when it starts to operate or it needs to 
change its property, such as changing frequency (explained in the 
next section) and power consumption level. CC1000 exposes 
three pins (PALE, PCLK and PDATA) for this purposes. 

Table 3(a). CC1000 configuration interface to ATMega 103L  
ATMega 

103L TinyOS macros CC 1000

Port D 
bit-5 

TOSH_SET_POT_SELECT_PIN( ) 
TOSH_CLR_POT_SELECT_PIN( ) PALE 

Port D 
bit-6 

TOSH_SET_RFM_CTL1_PIN( ) 
TOSH_CLR_RFM_CTL1_PIN( ) PCLK 

Port D 
bit-7 

TOSH_SET_RFM_CTL0_PIN( ) 
TOSH_CLR_RFM_CTL0_PIN( ) 
TOSH_READ_RFM_CTL0_PIN( ) 

PDATA 

 
 These pins are mapped to data port pins (port D bit 5,6 and 

7). By setting or clearing these pins, the microprocessor can send 
a sequence of bits (control register address, a byte data and a bit 
representing whether the operation is write or read) as it is shown 
in the following figure: 

 

 
Figure 7. Steps to write or read CC1000 control registers 

This is implemented as init(), write() and read() in 
HPLChipconC module. 

 

3.1.4 Using multiple channels 
Whereas TR1000 radio chip in MICA operates at a fixed 

frequency of 916.5 MHz, CC1000 can be set up to operate at one 
of the three different bands (433 MHz, 868 MHz and 900 MHz). 
The band is determined by selecting capacitor and inductor values 
for the resonator and the filter in the wireless sensor board. 

 Within each band, we can select one channel at run time 
among a number of frequencies. The purpose of selecting 
channels is to reduce any interference from neighboring sensor 
nodes or other wireless devices. The 900 MHz band is preferable 
for its wider range frequencies that can be selected where as 433 
MHz has longer range due to its longer wavelength. We chose 
433 MHz band in favor of longer range. 

For the CC1000 radio chip to operate at a specific frequency, 
it needs to be configured with the correct frequency words and 
clock divisor byte. CC1000 transmits and receives at different 
frequency and these frequencies are represented by two 24-bit 
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frequency words. These frequencies are generated by dividing the 
frequency synthesizing clock (we are using 14.7456 MHz) with 
the clock divisor byte. These values are set up in ChipconC 
module. A recommended values are listed in [3], but none of them 
worked for 433MHz band. We found 4 working channels by 
measuring signal strength for different values within  433 MHz 
and 435 MHz. Here are the channels we found: 

Table 4. Channels available for DOT3 in 433MHz band 
 CH 1 CH 2 CH 3 CH 4 MICA 

Frequency 
(MHz) 433.02 433.64 434.20 434.71 916.50 T

X 
CC1000 reg 4-6  57f785 581785 583785 585785 - 

Frequency 
(MHz) 433.09 433.71 434.27 434.78 916.50 R

X 
CC1000 reg 1-3  580000 582000 584000 586000 - 

CC1000 reg 12 
Divisor (PLL) 60 60 60 60 - 

Output Power 
(dBm) -45 -45 -47 -47 -52 

 

Figures 8 (a) and (b) show the waveforms in Spectrum 
analyzer when the configuration is correct and wrong. In Figure 
8(a), all the external components such as resonator and filter are 
set to 433MHz band and the control register of CC1000 is 
correctly configured. The waveform has the peak around 433MHz 
and its peak output power had around -45dBm using inducting 
antenna in Spectrum analyzer input. In Figure 8(b), control 
registers are set to 433MHz, but the inductor in the resonator is 
set to the value used in 900MHz band.  Since this resonator value 
doesn’t match the other external components and the 
configuration value, it results in the peak somewhere middle 
between 433MHz and 900MHz and its output power is much 
weaker that it should be. Actually, initial build of 433MHz DOT3 
nodes had this bug and it was one of difficulties in early stage of 
our project.  

 

 

3.2 Packet decomposition and reassembly 
Packet decomposition and reassembly is done in 

ChannelMonC with the help of SpiByteFifoC module. SPI is 
synchronized to the microprocessor with the clock and generates 
an interrupt at regular interval.  

At each interrupt invocation, the interrupt handler SIG_SPI 
in SpiByteFifoC module is called. Then, we can determine we can 
send or receive a byte by looking at the control register (SPSR) as 
it is shown in Figure 9: 

 
Figure 9. State Transition diagram for 
packet decomposition and reassembly 

 

Initially, the state is in IDLE state. If no incoming bytes are 
available, ChannelMonC sends a packet. Since radio chip 
transfers data in bytes, we need to tell the beginning and the end 
of a packet. This is done by having a special sequence of bytes 
(preamble and start symbol) in the beginning and the fixed 
number of bytes after that. After sending preamble and start 
symbol, ChannelMonC sends data bytes. Data bytes can be sent 
as they are or can be sent after being encoded with error 
correction code for integrity. We used SecDedEncoding TinyOS 
module which implements a single-error-correction-and-double-
error-detection (SECDEC) code. The version of ChannelMonC 
with error correction code is ChannelMonEccC. 

When there is an incoming byte, ChannelMonC reads the 
byte and see whether the sequence of bytes received up to now 
matches the preamble. Then, it goes to FIND_SYNC state. If the 
next incoming bytes match the start symbol, it goes to READING 
state. After reading the fixed length of data (36 bytes is default), 
ChannelMonC notifies the arrival of a packet to RFCommM 
module. 

3.2.1 Error correction using a SECDED code 
SecDedEncoding module takes 1 byte data and generates 3 

byte output. Since preamble and start symbol are 7 bytes long and 
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the data in a packet is 36 bytes long, a packet sent using 
SecDedEncoding has 31% of utilization ( = 3637

367
×+
+ ). 3 bytes is 

not the optimal size when we encode 1 byte.  

According to even-odd code explained in [1], when we have 
d-data bits and r-parity bits, r should meet the following 
inequality. 

∑
≤−≤

+≥
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For d = 8, r = 5 is the smallest number that meats the inequality. 
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Thus, we outputs 13-bits for 1-byte input. The reason why 
existing SECDED implementation used more bits (24-bits) is they 
tried to balance the number of 0’s and 1’s in a bit sequence (bit 
stuffing).  

According to [7], 0 or 1 is detected by comparing received 
bytes with the average voltage level up to now. A long sequence 
of 0’s or 1’s changes the average voltage level from the center 
and detection of 0 and 1 may not be correct. This bit stuffing is 
needed in NRZ encoding which sends high for 1 and low for 0. 
CC1000 provides not just NRZ encoding but also Manchester 
encoding. Manchester encoding avoids long sequences of 0’s or 
1’s by sending low-to-high or high-to-low. However, we haven’t 
yet found the economical error correction code that can be used in 
Manchester encoding.  

 

3.3 Reliable Transport Layer  
We wanted reliable communication. But we also wanted 

compatibility and ease of use. So we designed to give the same 
interface as that of existing best-effort transport layer. As shown 
in Figure 10, we designed reliable transport layer so that it can be 
inserted between best-effort transport layer and application layer 
without any significant modification of application. 

 
Figure 10. Compatible interface of reliable transport layer 

 

We also wanted light-weight layer. Compatible and light-
weight approach made us to implement connection-less 
communication. Interface of existing best-effort transport layer 
supports only connection-less communication. In the reliable 
transport layer, Connection information is managed globally. 

To guarantee reliable communication, we mainly used 
acknowledgement and retransmission. Packet structure came to 
incorporate more information. Sender and receiver use this 
information and react properly according to it. 

 

3.3.1 Reliable Message 
For reliable communication, additional meta-data (source 

address, acknowledgement number) needs to be included in each 
packet. The packet size is 36 bytes. 7 bytes are already used by 
lower layers for meta-data. And 29 bytes are used as date field. 4 
more bytes (2 for source address, 2 for acknowledgement) are 
taken from data field for meta-data in the reliable transport layer. 
Now the length of data field decreased from 29 bytes to 25 bytes 
(13.8 percent of loss). Sender gets a usual packet from upper 
application layer. And it realigns data, adds source address and 
acknowledgement number, and sends it to lower best-effort 
transport layer. Receiver also does the same conversion. Packet 
structure is shown in Figure 11. The use of  additional meta-data 
is transparent to applications except the decreased size of data 
field. 

 
Figure 11. Packet structure for reliable transport layer 
 

3.3.2 Sender 
Sender is a finite state machine. When sender gets a packet 

from upper application layer, it adds source address and 
acknowledgement number as shown in the Figure 11, realigns 
data, and passes the packet to the lower best-effort transport layer. 

If the sender receives acknowledgement from receiver, it 
reports success to the upper application layer. If it does not 
receive acknowledgement until time out, it retransmits the 
unacknowledged packet.  The amount of waiting time is a random 
number between T and 2T. After N successive time-outs, sender 
reports failure to the upper application layer. 

For simplicity, sender uses block-and-wait strategy. Sender 
only needs to remember current receiver’s information. Figure 12 
shows main part of state diagram of the sender. 

Since there is no queue in the lower layer, if sender tries to 
send a packet while the receiver of the same node is also replying 
by sending acknowledgement, the packet of sender can be lost. So 
buffer of size 1 is used for sender. When acknowledgement is 
under process, sender saves the packet in buffer and transmits 
after the receiver of that sensor completes acknowledgement. 
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Figure 12. Schematic of reliable transport 

 

3.3.3 Receiver 
Receiver is also a finite state machine. When receiver gets 

packet from the lower best-effort transport layer, it looks at source 
address and acknowledgement number. If it is a new packet, it 
sends acknowledgement and passes the packet to the upper 
application layer. If it is a packet already received, it only sends 
acknowledgement to the sender. 

To decide whether the received packet is a new packet or an 
already received one, it keeps connection information in the ‘Ack 
table’. The table has a pair of sour address and acknowledgement 
number as an entry. In case of lost acknowledgement, as in Figure 
13, duplicate data packets can come. Then we should not report 
the second packet, and we need table for this purpose. 

 
Figure 13. Lost acknowledgement 

 

Since the size of table is limited, it can not handle arbitrary 
number of connection all the time. So FIFO algorithm is used to 
replace entry in the table. To reduce table lookup time, reverse 
chronological search is used. It looks up most recent connection 
first, and then next recent connection, and so on. 

3.4 Installation 
TinyOS keeps program files dependent on a specific 

platform under $TOSROOT/tos/platform directory. We 
placed the files related to DOT3 platform under 
$TOSROOT/tos/platform/mica2dot directory. In Current 
1.0 version TinyOS, the path to the platform specific directories 
are scanned only when the nesC compiler is built unlike 0.6 
version. Thus just copying platform specific files and modifying 
make files doesn’t work. These are the steps to install DOT3 
specific files including network stack: 

• Modify $TOSROOT/nesc/tools/ncc,  $TOSROOT/nesc/ 
tools/ncc.in and $TOSROOT/apps/Makerules to handle 
DOT3 platform. We simply copied the statements for mica 
platform as mica2dot and changed the name mica to 
mica2dot. 

• Copy files specific to DOT3 platform including our radio 
implementation under 
$TOSROOT/tos/platform/mica2dot 

• Delete existing installation of nesC compiler and make 
install nesC compiler. This is done by  
rm /usr/local/bin/ncc 
cd $TOSROOT/nesc 
make 
su 
make install 
 

4. Evaluation 
We set up two kinds of experiments to see the effectiveness 

of our network stack implementation. In outdoor experiments, the 
sender sends a number of packets and the receiver counts how 
many packets it received from the sender as we moves the sender 
far from the receiver. We did outdoor test in the middle of 
Berkeley campus as shown in Figure 14: 

 
Figure 14. Locations of outdoor experiments 

In the indoor experiments, we had senders and receivers send 
and receive packets in a short distance as we vary number of 
senders or number of channels used. We used the ratio of 
successfully received packets as an indicator of effectiveness of 
each transmission method. 

4.1 Comparison with MICA 
Since the immediate goal is to make DOT3 work as well as 

MICA, we set up an experiment to compare our DOT3 network 
stack implementation with that of MICA. We measured the packet 
receiving rate and the transmission time for MICA and DOT3 as 
we vary the distance between the sender and the receiver. Both 
implementation used SECDED non-retransmission scheme. 

 
Figure 15. Ratio of received packets (DOT3 vs. MICA) 
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Due to the underlying radio chip, DOT3 network 
implementation produced better properties: close to 100% 
receiving rate up to 800 ft and more than three times the coverage 
(1200 ft vs. 350 ft). However, the transmission time of DOT3 was 
slower than that of MICA. Even though we consider the twice 
slower transfer rate of DOT3 (19Kbps vs. 40Kbps), our DOT3 
radio implementation was  more than twice slower (60sec vs. 9sec 
for 512 packets). This is because we used slower interrupt handler 
than that in MICA (SPI instead of timer interrupt). 

4.2 Effects of error correction code 
To see the effectiveness of using error correction code, we 

measured the packet receiving rate for the two implementations: 
the one with error correction code (SECDED) and without it. 

  
Figure 16. Ratio of received packets (ECC vs. non-ECC) 

 

As it is shown in Figure 16, the packet receiving rate 
decreased as the sender moves away from the receiver, especially 
after 500 ft. Whereas the ECC implementation was more resilient 
to errors and had better packet receiving ratio up to its limit (1200 
ft).  

4.3 Effects of retransmission 
To see the effectiveness of retransmission, we set up the two 

experiments. In the first experiment, we vary the distance between 
the sender and the receiver for different implementations: the 
implementation with no retransmission and the ones with 2,3 or 5 
retransmissions. All implementations used SECDED for integrity. 
In the second experiment, we located multiple senders (1, 2 or 4) 
and a receiver closely to see the effects of retransmission when 
the collision rate is different. We measured the packet receiving 
rates and the transmission time for two extreme cases: no 
retransmission and 5 retransmissions. 

 
Figure 17. Ratio of received packets (Non-retransmission vs. 

Retransmission implementations) 

 

In the first experiment, retransmission was slightly better 
than the best effort transmission. The difference between three 
retransmission schemes was not that noticeable except that 
retransmission 5 could receive the message all other methods 
failed at 900 ft.  We find this was possible because radio waves 
from the sender took different paths somehow while the sender 
tries to retransmit the packets. 

 
Figure 18(a). Ratio of received packets with multiple senders 

 
Figure 18(b). Time to transmit packets with multiple senders  

 

The effects of retransmission in a closely populated area was 
very noticeable. It reduced most of the packet drops due to  
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packets are very likely to be dropped when multiple nodes are 
sending packets in bursts and the packet drops can be avoided 
with retransmission.  

As the rate of collision gets higher, retransmission takes 
more time, because current version of retransmission does not 
consider collision condition. 

4.4 Effects of using multiple channels 
In this experiment, we prepare 8 nodes, and divided them 

into 4 groups, each of which is composed of one sender and one 
receiver. 

We measured the packet receiving rates and the transmission 
time for non retransmission implementation and 5 retransmission 
implementation with four senders. We varied the number 
channels used(1, 2 and 4) to see the effects of multiple channels 
for the two implementations. 

 
Figure 19(a). Ratio of received packets with multiple channels  

 
Figure 19(b). Time to transmit packets with multiple channels  

The results show that using multiple channels was more 
effective to non-retransmission implementation than 
retransmission implementation. This is expected from the results 
of section 4.2 in that retransmission received most of the packets 
whereas non-retransmission got only 10% of the packets.  

Using multiple channels also helped the retransmission time. 
It paid smaller amount of transmission time when more channels 
are available. When there are less channels available, it spent 
more for transmission and achieved still high packet receiving 
rate. This implies that retransmission and use of multiple channels 
can be beneficial for reliable packet delivery. 

We can also infer that there is some interference among 
channels. Otherwise, for the case of 4 channels, ratio of received 
packets should be very close to 100% for best effort transport. 

4.5 Overhead of reliable transport layer 
To measure overhead of sender, we eliminated wait for 

acknowledgement in sender side. And for 512 packets, we 
measured completion time. The result is shown in Table 5. 

Table 5. Time to send/receive 512 packets 

Best Effort Retransmission 
(5retransmission) 

Retransmission 
(0 retransmission) 

31 sec 64 sec 32 sec 

 

The overhead is negligible for the sender. 

To measure overhead of receiver, we made receiver send 
data to another sensor node. However, the two sensor node except 
the receiver also interfered each other. Unfortunately we could 
not get correct result. We surely expect some overhead for 
receiver side, because it should send a packet for each incoming 
packet while this is not needed in best effort transport. 

In retransmission, every packet involves two transmissions. 
This explains the reason why retransmission takes about twice 
longer than best effort does. 

4.6 Rayleigh fading and theoretical limit of 
range 

If we look at the range test results in previous Figures, the 
graphs consistently had dips at 900 ft. Once the sender moves 
farther from that distance, the receiver received the packets from 
the sender again. This happened because radio signal is 
propagated through waves. Radio waves from the sender take 
paths while they travel and their phase can change when they 
reflect on some obstacles. Waves of opposite phase cancel each 
other and the resulting signal becomes weaker than the sensitivity 
of the receiving node, thus packets cannot be heard. This 
phenomenon is called Rayleigh fading and illustrated in Figure 20. 

 
Figure 20. Rayleigh fading  

 

More complicated devices like CDMA cellular phone use 
multiple antenna of different phase to avoid problem, but we 
cannot depend on this method because CC1000 has only single 
antenna. However, we can around this by having intermediate 
nodes between the two nodes and by having the intermediate 
nodes relay the packets. 
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5. Discussion and Conclusion 
As it is shown in section 4.1, our network implementation 

had slower transmission time than MICA. We expect this will be 
cured by using timer interrupt which is faster than the one used. 

Our reliable transmission scheme was effective in reducing 
packet losses, but the overhead was a bit high when there was 
much collision. This is because senders still try to resend 
unacknowledged packets after randomly chosen time within the 
timing window of fixed size. Even though waiting time varies 
within the timing window, it was not helpful when collision is 
high. We expect increasing timing window size like ‘exponential 
back-off’ will reduce the rate of bytes sent so that the overall 
system can make progress.  

In reliable transport layer, sender’s window size is 1 and this 
causes the sender block and wait. Increasing window size will 
reduce the waiting time, and improve transfer rate. Sender will 
need ‘Ack table’ and buffers for unacknowledged packets. The 
‘Ack table’ in the sender is similar to the one in the receiver. And 
the receiver needs buffer to support in-order delivery. 

The results in section 4.4 showed that using multiple 
channels was very effective for reducing collision when multiple 
senders burst packets. Currently, the channel is tuned with the 
identifier (group ID) which is given at compile time. Since 
channels are statically determined, performance can degenerate 
into that of single channel when they are misconfigured. We 
expect that dynamic frequency allocation like the frequency 
hopping in Bluetooth is needed for our implementation. 

We used existing SecDedEncoding module in TinyOS for 
error correction code. For 1 byte data, SecDedEncoding generates 
3 byte output, which is larger than the optimal value 13-bits. The 
use of Manchester encoding in CC1000 gives us to chance to 
transfer data with less bytes because 0-1 balancing  is not needed.  

We consider an application that utilizes the long range 
coverage of DOT3 radio in monitoring facilities in Microlab in 
UC Berkeley. Since the Microlab is heavily dependent on liquid 
nitrogen in many of silicon manufacturing processes, they 
monitor the status of nitrogen tanks such as nitrogen pressure and 
flow. The nitrogen tanks are outside Cory Hall and connected to 
the Microlab via wires (around 100 ft). These wires are not easy 
to maintain and make it hard to relocate Microlab facilities. We 
expect that some number of DOT3 wireless sensors can substitute 
these wires that run through the building.  
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