
Reliable Transfer on Wireless Sensor Networks

Sukun Kim
binetude@cs.berkeley.edu

Rodrigo Fonseca
rfonseca@cs.berkeley.edu

ABSTRACT
In Wireless Sensor Networks, many applications like struc-
ture monitoring require collecting all data without loss from
motes. End-to-end retransmission which is used in Internet
for reliable transport layer, does not work well in Wireless
Sensor Networks, since wireless communication, and con-
strained resources give new challenges. We looked at factors
affecting reliability, and searched possible options. Informa-
tion redundancy like retransmission, erasure code, and thick
path are candidates. However, if loss is not randomly dis-
tributed, those methods does not work well. For example,
when link fails, but routing table is not updated, all packets
through that path will be dropped. Route fix, which tries
alternative next hop after some failure, reduces correlated
consecutive drops, so that information redundancy can per-
form well.
Experiment on real testbed in Soda Hall shows that route
fix with erasure code provides good reliability. And encod-
ing and decoding of erasure code is efficient.
More investigation of data (overhead, delay) will give deeper
insight in comparing options.

Keywords
wireless sensor networks, reliable transfer, retransmission,
erasure code, route fix

1. INTRODUCTION
There exist many applications which require all data with-
out loss. For example, structure monitoring needs the entire
data from all measuring points to build a model and analyze
it. Moreover, data collection can be done over multi-hop net-
work. Challenges to achieve reliability on Wireless Sensor
Networks can be divided to three main categories.
Challenges in the first category are related to the problems
coming from wireless communication. Asymmetry of link
makes link quality estimation hard. Correlated losses (ob-
stacles, interference) can lead to consecutive losses decreas-
ing effectiveness of erasure code. Weak correlation between

quality and distance, hidden terminal problems, and dy-
namic change of connectivity complicates the situation fur-
ther.
The second sort of problems come from the constrained re-
sources of Wireless Sensor Networks motes. A mote is bat-
tery powered, so has limited power source. And it has small
computational power and memory space. Even for commu-
nication, its bandwidth is narrow. Therefore we can’t play a
complicated algorithm to achieve reliability. We can’t send
many control packets to tune network, nor can we run so-
phisticated algorithm in motes.
Diverse routing layers add more challenges. Since motes are
constrained in resource, there are different routing layers
customized for specific purpose. Even if we can run point-to-
point routing for dissemination of information or collection
of data, this approach is very inefficient. For collecting data
(convergence routing), each node only need to keep which
nodes are candidates for its parent. This reduces burden to
keep additional information to support routing to any node.
Dissemination of information like code image distribution
is similar to multicast (divergence routing). In this case,
we can benefit from broadcasting nature of wireless com-
munication. By injecting one packet into channel, everyone
around can hear the packet. Compared to sending packet to
each single receiver, this can save huge effort. So there are
three main routing layers categories: point-to-point routing,
convergence routing, and divergence routing. One transport
layer or one method may not work for all three cases well.
But it is not a good idea to keep three separate versions of
reliable transfer either. At least it will be desirable to share
some components if possible, wherever it might be located
in network stack.

In this paper, we will look at diverse options for improving
reliability over multiple-hops, focusing mainly on point-to-
point routing. First of all, it would be worthy seeing fun-
damental factors determining reliability. Then we will see
possible options which improve each factor. Let us simplis-
tically look at the following equation

numberofpacketsreceived = Psuccess × numberofpacketssent

The goal is to increase (number of packets received) suffi-
ciently so that we can get all data. Even though it is also
important which packets are received as we will see later, the
basic limitation is delivering a sufficient amount of packet.
This in turn amounts to increasing either (number of packets
sent) or increasing the probability to get through (Psuccess).



N1

N2
N3

Figure 1: Possible options to achieve reliability

Increasing the number of packets sent can be interpreted as
adding redundancy to information. One option is retrans-
mission. End-to-end retransmission is used in TCP of Inter-
net. Link-level retransmission is used in wireless communi-
cation where loss rate of link is high. Adding redundancy to
data is also an option. Sending additional parity packet for
some number of previous packets is a good example. Era-
sure code can be thought as a generalization of parity code.
Rather than sending one additional packet, erasure code can
send multiple additional packets. In case of parity packet,
any M out of M+1 packets will reconstruct original M data.
Likewise, erasure code enables reconstruction of M original
data only if M out of M + R packets are received. In the
Figure 1, N1 is sending data with erasure code. We can also
add redundancy to path. As N2 in Figure 1, thick path can
be used. Every node within the path width (actually long
rectangular area) will participate in transferring data.

Increasing the probability to deliver packet has a critical
benefit. If Psuccess is not randomly distributed, some tech-
niques of information redundancy can not provide reliability
efficiently. For example, erasure code can survive up to R
losses. Correlated consecutive R + 1 or more losses make
erasure code unable to decode. Congestion control is an
approach used in Internet to prevent queue overflow, and
to decrease delay. Adding alternative routes alleviates cor-
related losses coming from dynamic change in connectivity
graph. Wireless link can be unusable any time, but it takes
time to update routing table to incorporation this informa-
tion. Then from link failure to routing table update, every
packet through that link will be dropped. We can attenuate
the problem by increasing the update frequency. However
this means more control traffic. Or after some delivery fail-
ure, we can try alternative next hop. This is the case of N3
in Figure 1.

In this paper, we will look at link-level retransmission, end-
to-end retransmission, erasure code, and alternative route.
Other options remain as future work. We examined those
options on real-world testbed. We will provide the result in
Section 8. And then we will see which options and which
combinations of options are good choices.

2. RELATED WORK
In Wireless Sensor Networks, there exist different types of
routings. There is convergence routing [9], which can be
used for collecting data. Deluge is for divergence routing
[4], and program image dissemination is a good example of
application. There also exists point-to-point routing with
geographical information.
There exist diverse algorithms for erasure code which can
be implemented in either software or hardware [8, 2]. [8]
exploits diverse optimizations, from which this work gained
many hints. Rateless code [3, 7] is a class of erasure code
in which arbitrary number of code words can be produced.
However, those works are not optimized for systems with
low capability: not much attention was paid to cases with
extreme space limitation. Work in this paper puts heavy
weight on optimization for node with very limited resources.

3. LINK-LEVEL RETRANSMISSION
Loss rate on wireless link is much higher than that of wired
link. And this effect accumulates quickly as the number of
hops increases. For example, when loss rate is 10% per hop,
after 15 hops loss rate becomes 80%! If a message is lost at
nth hop, all previous n-1 transfers become waste. To deliver
the packet to nth hop again, we need n-1 additional transfer,
if all n-1 transfers succeed. If we try link-level retransmis-
sion, just one retransmission can bring packet to the same
point. For efficient use of wireless channel, link-level retrans-
mission is a very good choice.
There exists drawback in link-level retransmission, when
used together with some particular technique. Delivery time
depends on number of retransmission in the middle, and
Round trip time (RTT) varies significantly. This situation
makes end-to-end retransmission inefficient. Since we do not
clearly know the RTT, an upper bound need be used. Then
in case of a packet loss, the sender should hold its buffer for
a longer time. Holding memory space for a long time is not
desirable in resource-constrained Wireless Sensor Networks.
And for link-level acknowledgement, there is 20% decrease in
channel utilization. Another minor downside is that middle
node needs to hold buffer until it receives acknowledgement
from the next hop.

4. END-TO-END RETRANSMISSION
End-to-end retransmission is method used in Internet. This
can guarantee eventual reliability regardless whatever hap-
pens in the middle. However, as pointed out in the previous
subsection, this solution may not work well when combined
link-level retransmission is also used. And there exists over-
head for opening session and acknowledgement. For small
data, control overhead becomes relatively large. Further-
more, in many situations end-to-end acknowledgments may
not be practical, for example when the reverse path may not
exist.
For our experiments we use an implementation of end-to-end
retransmission, Large-scale Reliable Transfer (LRX) compo-
nent. The following is overview of protocol in LRX, which
is quoted from [6].
Large-scale Reliable Transfer (LRX) component assumes that
data resides in RAM. Upper layer should handle non-volatile
storage. LRX transfers one data cluster, which is composed
of several blocks. One block fits into one packet, so the
number of blocks is equal to window size. Each data cluster
has a data description. After looking at data description,



ChannelEncoding Decoding

NM N’ M

Figure 2: Mechanism of Erasure Code

receiver may deny data (receiver already has that data, or
that data is not useful anymore).
Explicit open handshake is used. Data description and size
of cluster is sent as a transfer request. If receiver has enough
RAM, and application layer agrees on data description, then
receiver sends acknowledgement for transfer request.
Once connection is established, actual data is transferred.
Protocol at high level can be summarized as selective ac-
knowledgement and retransmission. Data transfer is com-
posed of multiple rounds. In each round, sender sends pack-
ets missing in the previous round. At the end of each round,
receiver sends acknowledgement saying which packets are
missing. Then sender, after looking at this acknowledge-
ment, sends packet missing again. The first round can be
thought of as a special case where every packet was missing
in the previous (imaginary) round.
Tear-down is implicit. Successful tear-down for both sides
cannot be guaranteed anyway, however close phase will in-
troduce overhead, and delay. We favored quick movement
to next connection, and eliminated close phase.

5. ERASURE CODE
Erasure code is code with which we can reconstruct m orig-
inal messages by receiving any m out of n code words (n >
m). If n is sufficiently large compared to the loss rate, we
can achieve high reliability without retransmission. Figure
2 shows high level mechanism of erasure code. A particu-
lar erasure code algorithm called Reed-Solomon code is used.
To explain Reed-Solomon code, linear code will be presented
first, followed by Vandermonde matrix.

5.1 Linear Code
For encoding process, there exists encoding function C(X)
where X is a vector of m messages. Then C(X) will produce
a vector of n code words (n > m). If code has a property
that C(X) + C(Y ) = C(X + Y ), then it is called a linear
code. Linear code can be represented with a matrix A. code
word vector for message vector X is simply AX. Encoding
is matrix-vector multiplication. Decoding is finding X such
that AX = Z for a received code word vector Z. This is
finding solution to linear equation AX = Z. We can see that
A should have m linearly independent rows so that linear
equation has unique solution, and in turn unique message
vector.



1 x1 x2
1 · · · xm−1

1

1 x2 x2
2 · · · xm−1

2

1 x3 x2
3 · · · xm−1

3

...
...

...
...

...
...

...
...

1 xn−1 x2
n−1 · · · xm−1

n−1

1 xn x2
n · · · xm−1

n


Figure 3: Vandermonde Matrix



1 x1 · · · xm−1
1

1 x2 · · · xm−1
2

1 x3 · · · xm−1
3

...
...

...
...

...
...

1 xn−1 · · · xm−1
n−1

1 xn · · · xm−1
n




w0

w1

...
wm−1

 =



p(x1)
p(x2)
p(x3)

...

...
p(xn−1)
p(xn)


Figure 4: High level diagram showing how Reed-
Solomon code works

This code is very useful, since encoding and decoding are
computationally inexpensive. This is especially attractive
in resource-constrained Wireless Sensor Networks.

5.2 Vandermonde Matrix
There is one more thing we need to look at before Reed-
Solomon code. Vandermonde matrix is a matrix with ele-
ment A(i, j) = xj−1

i where each xi is nonzero and distinct
from each other, as shown in Figure 3. For n by m Vander-
monde matrix (n > m), any set of m rows forms nonsingular
matrix. That is to say, whatever set with m rows we may
choose, rows in the set are linearly independent. Lets define
this property as Property V for future use.

Definition (Property V ): For a n by m (n > m) matrix A,
if any set S of m rows of A form nonsingular matrix such
that all rows in S are linearly independent, then A is said
to have Property V .

We can see that in linear equation AX = Z where A is
Vandermonde matrix, any m rows and corresponding m el-
ements of Z form m by m square matrix and a vector of size
m, where matrix is nonsingular. Then we can uniquely de-
termine X. This sounds somewhat similar to erasure code.
Next subsection will describe Reed-Solomon code, which
uses the same idea.

5.3 Reed-Solomon Code
Basic idea of Reed-Solomon code is producing n equations
with m unknown variables. Then with any m out of n equa-
tions, we can find those m unknowns.
For a given data, let us break down it into m messages
w0, w1, w2, . . . , wm−1. And construct P (X) using these mes-



sages as coefficients such that

P (X) =

m−1∑
i=0

wix
i

And evaluate this polynomial P (X) at n different points
x1, x2, , xn. Then P (x1), P (x2), , P (xn) can be represented
as multiplication of matrix and vector as shown in Figure 4.
Here we can see that matrix A is Vandermonde matrix, W
is a vector of messages, and code words are contained in a
vector AW . If we have any m rows of A and their corre-
sponding P (X) values, we can obtain vector W which con-
tains coefficients of polynomial, which is again the original
messages. Reed-Solomon code can be also used to correct
error. However, in current implementation of TinyOS, each
packet has CRC to detect bit error. We can assume that
there will be no bit error in packet containing code word
(otherwise, it must be dropped at lower layer). Therefore,
error correction is not used in the implementation.

6. MODIFICATION OF ERASURE CODE
FOR WIRELESS SENSOR NETWORKS

We need more process to bring erasure code to real world
implementation, especially in resource-constrained Wireless
Sensor Networks (WSN). Several methods are used to im-
prove efficiency in mote.

6.1 Extension Field
For efficient use of bits in packet, we use extension field with
base 2. First of all, we need to look at field, and prime field.
We follow definition of mathworld [1]. Field is any set of ele-
ments which satisfies the field axioms for both addition and
multiplication and is commutative division algebra. Field
axioms include commutativity, associativity, ditributivity,
identity, and inverse. An archaic name for a field is rational
domain. The French term for a field is corps and the Ger-
man word is Korper, both meaning ”body.”
A field with a finite number of members is known as a finite
field or Galois field. For a given Galois field of size q, if
q − 1 powers of an element x (x1, x2, . . . , xq−1) produce all
non-zero elements, that element x is called a generator of
the given Galois field.
Prime field is a Galois field, whose elements are integers in
[0, p− 1], where p is prime. Addition and multiplication are
normal integer addition and multiplication with modulo op-
eration at the end. Prime field always have generator. The
size of prime field is p, and we need dlog2(p)e bits to rep-
resent all elements. Since p is not power of 2, there exists
waste in bit usage. For example, to represent prime field
with prime 11, we need 4 bits with which 16 numbers can
be represented.
Extension field is a Galois field whose elements are integers
in [0, pr − 1]. Extension field can be though as polynomi-
als on primefield(p). Operations follow rules of polynomial
operation with modulo operation at the end. Primitive poly-
nomial is generator of extension field. Interestingly, this set
with polynomial operations stated above, still satisfies prop-
erties of field. Moreover, by setting p = 2, we can fully utilize
bits in message. Property V of Vandermonde matrix still
holds for prime field, and even for extension field!

6.2 Systematic Code



1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1
1 xm+1 · · · xm−1

m+1

1 xm+2 · · · xm−1
m+2

...
...

...
1 xn · · · xm−1

n




w0

w1

...
wm−1

 =



w0

w1

...
wm−1

p(xm+1)
p(xm+2)

...
p(xn)


Figure 5: Systematic code

Encoding Unit

Figure 6: Divide packet into multiple independent
code words

If some part of erasure codes are original messages, when ev-
ery packet in this part arrives we can get original messages
without decoding. Such code is called systematic code. An-
other good property of Vandermonde matrix is that even if
any m rows of n by m (n > m) Vandermonde matrix are
substituted with rows of m by m identity matrix, the new
matrix still have Property V , even for extension field. Fig-
ure 5 shows one possible case.
When we use systematic code in this way, at the encoding
side, we dont need any computation for the portion of code
words containing original messages. This reduces encod-
ing overhead. At the decoding side, when we have all code
words containing original messages, we get messages with-
out any further computation. In this case, we can achieve
huge save in decoding computation (actually no computa-
tion is needed). Systematic code can give benefit even when
we loose some packets. At the decoding side, the more origi-
nal message part we have, the closer decoding matrix would
be to identity matrix, and the quicker decoding process be-
comes. Therefore, if we have most of code words containing
original messages, and some messages constructed by Van-
dermonde matrix, decoding will be very fast.

6.3 Multiple Independent Code Words in a
Packet

If one packet carries one code word, each code word will be
very large. This makes implementation intractable since op-



eration on such a large field requires huge space and time.
One solution would be using small messages and small code
words. Then, however, payload in a packet gets too small.
By putting multiple independent code words into a packet,
we can fully utilize payload space of a packet without prob-
lems of large code word.
Imagine dividing one big data into t pieces of small data.
Then each data is again divided into m messages, and en-
coded into n code words. We have total of tn code words
to send. Pack ith code words from each independent k data
into a single packet. We either get all ith code words for
k data, or we get nothing. Any m packets will provide m
code words for all k data, and we can reconstruct original k
data. Since all k data have code words with same sequence
set, decoding process is the same: same decoding matrix can
be used. This further enhances decoding efficiency. Figure
6 shows example. Here data is divided into 6 small data
chunks. Each data chunk is divided again to 4 messages.
Messages from each chunk are encoded to 7 code words in-
dependently. Then code words from all data chunks with
same sequence number are packed into the same packet.
The drawback of dividing packet into multiple code words is
the limitation for the number of messages and code words.
The number of messages can not exceed number of bits used
to present message. The number of code words should be
smaller than the size of extension field. For example, if each
code word is 8 bit long, maximum number of messages is
limited to 8, and maximum number of code words is limited
to 255.

6.4 Operation Table
As describe before, extension field is used to efficiently use
packet payload. Operations on extension field are not simply
addition and multiplication combined with modulo opera-
tion. They are polynomial operations with modulo. There-
fore, rather than performing complex computation on the
fly, table is used to lookup result of operation. Addition is
XOR of two numbers, and we dont need table. For multipli-
cation and division operation, exponent and log values are
computed and stored as tables.
Here we need to look at generator. Let the size of extension
field be q = pr, where p is prime. Extension field has gener-
ators. Let one of them be α. For any generator α, when we
keep multiplying α, we can produce all q − 1 non-zero ele-
ments. And then α is produced again starting cycle. That
means

αq mod q = α, αq−1 mod q = 1

Let

x = αkx mod q, y = αky mod q

Exponent and log are defined as follows

exp(kx) = x, log(x) = kx where x, kx ∈ GF (pr)

Then multiplication of xy is

xy mod q = αkxαky mod q = αkx+ky mod q

= αkx+ky mod (q−1) mod q = exp(kx + ky mod (q − 1))

= exp(log(x) + log(y) mod (q − 1))

Inverse of x is

1

x
= α−kx = αq−1−kx = exp(q − 1 − kx)

= exp(q − 1 − log(x))

Therefore, multiplication involves two log table lookups, one
addition, one modulo, and one exponent table lookup. In-
verse involves one log table lookup, one subtraction, and one
exponent table lookup.
These tables consume memory space. However, frequent use
of multiplication operation justifies usage of table. And cur-
rently computation on the fly takes O(size of extension field)
time which grow exponentially with the size of code word.
As we will see in the next section, the memory usage is
moderate when the size of message and code word is small.

7. ALTERNATIVE ROUTE
Adding an alternative route in the case of the failure of a
given link is yet another way to increase reliability. When a
link between two nodes fails, the messages sent by the first to
the second will successively be dropped, until the link esti-
mation component is triggered and selects a new route. This
process, if prevalent, can eliminate the benefits obtainable
from erasure coding, since many losses on the same encoded
messages will very likely be above the redundancy added
in the coding process. In this case, it should be clear that
link-level retransmissions are of no great help, unless used
to an prohibitively long extent, because no messages will get
through. A sensible strategy, then, is to detect the failure
as soon as possible, and send the packet to an alternative
route, if possible.

This points to the need of special support from the routing
layer for enabling alternative paths towards the destination.
This flexibility ultimately depends on the routing geometry
of the routing algorithm, to paraphrase the work done for
Peer-to-Peer DHT algorithms in [5]. For example, in the
case of aggregation, in which nodes route to a parent in the
tree to the root, there may be many nodes within communi-
cation range that decrease the distance to the root. In geo-
graphic routing, there may also be more than one neighbor
that allows progress towards the destination. In our evalu-
ation we use an implementation of Beacon Vector Routing
(BVR). We describe the algorithm in some detail in Section
8, but for now it suffices to say that it allows flexibility in
the selection of routes.

8. EVALUATION
We thought of three metrics: success rate, overhead, and
delay. Success rate is percentage of packets which arrived
at final destination. Overhead is the number of packets in-
jected to network to deliver one packet from source to desti-
nation. Overhead includes both loss rate, and average num-
ber of hops from source to destination. Since some options
may take more reliable path even though it could be longer,
overhead is more meaningful than packet loss rate. But this
makes hard to compare results from two different pairs of
nodes. Delay is time during which a packet travels from
source to destination. In case of end-to-end retransmission,
it is from opening connection to tearing down connection,
since sender should preserve buffer space during that amount
of time. For erasure code, it is time until receiver gets suffi-
cient number of packet to decode data, or times out. This is
reasonable since receiver should keep buffer for during that
period.



Figure 7: Floor plan of testbed in Soda Hall

Comparison of options is performed on testbed in Soda Hall.
Figure 7 shows floor plan of testbed.

8.1 Beacon Vector Routing
In our experimental evaluation, we use an implementation
of Beacon Vector Routing (under submission), a point-to-
point routing algorithm for wireless sensor networks. For
the purpose of our evaluation, it is not necessary to describe
the routing algorithm in much detail, except for its aspects
that provide flexibility in selecting routes.

Beacon vector routing assigns virtual coordinates to nodes,
derived solely from the network connectivity information.
A subset of the nodes is selected as “beacons”, and these
beacons flood the network at least once, so that all nodes
learn their distance to the set of beacons. The beacons act
as reference points for routing. A node’s coordinate is then
the set of tuples < Bi, di >, for the beacons i ∈ B. Each
node in BVR is required to know its distance to each of the
beacons, and the coordinates of its one-hop neighbors. This
set can also be extended to the k-hop neighbors, but the
current implementation uses k = 1.

The basic routing exported by BVR is a route-to-coordinate
interface. Routing in BVR is a form of greedy routing, sim-
ilar to the routing used in geographic routing algorithms.
When given a packet to route to a coordinate, a node selects
the neighbor whose coordinates are the closest to the desti-
nation’s coordinates, by some distance metric. The simplest
such metric is given by Equation 1 below, and is equal to
the sum of the absolute component-wise differences of the
two coordinates (a form of an L1 metric).

δ(P(p),P(q)) =

r∑
i=1

ωi|Bip − Biq|, (1)

This greedy-routing procedure may fail when no neighbor
makes progress in the coordinate space towards the desti-
nation. To get out of these ’local minima’, BVR employs a
fallback routing mode that ultimately guarantees that the

Effect of Route Fix

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

Max Number of Retransmission

S
uc

ce
ss

 R
at

e

w/o Route Fix
w/ Route Fix

Figure 8: Effect of route fix

destination will be reached. In fallback mode, the node
forwards the packet towards the beacon that is closest to
the destination. This beacon is readily determined by the
smallest component of the destination’s coordinates. The
minimum distance reached by the packet is recorded in the
packet; this allows each node to resume normal greedy rout-
ing when one of the neighbors makes progress. Eventually,
a packet may reach the beacon which is closest to the des-
tination. In this situation, normal greedy routing cannot
be used without the guarantee of loops. The beacon then
initiates a scoped flood that will reach the destination. The
choice of the fallback beacon as the closest to the destination
minimizes the flood scope.

We can now explain how in BVR one can get flexibility for
choosing next hops. At each step of greedy routing , there
may be many nodes which make progress in coordinate space
to the destination. Also, when doing fallback-mode routing,
any node that is reachable and is closer to the desirable root
is good to be used. In the BVR implementation, we fix the
maximum number of alternative routes to 6, and the routing
layer returns these alternatives ordered by progress and link
quality.

8.2 Success Rate
Test data is collected from two particular pairs of nodes:
one pair for test without route fix, and another for test with
route fix. Both pairs are around 8 to 12 hops away, and link
loss rate is around 20%. Network outage is excluded.
Figure 8 shows effect of link-level retransmission and route
fix on success rate. Sending packets in alternate routes can
be seen as a type of retransmission, and so some care must
be exercised when counting the number of retransmissions
for a given situation. Routing layer provides up to 6 candi-
dates. Without route fix, 3 retransmission touches plateau.
With route fix, 2 retransmissions approach ceiling.
Figure 9 shows effect of link-level retransmission and era-
sure code. Each line is related to how many redundant code
words are added to 8 original messages. Both show signifi-
cant improvement. When end-to-end reliability is over 80%,
more than 2 redundant packets does not seem to be neces-



Systematic Code without Route Fix

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6
Max Number of Retransmission

S
uc

ce
ss

 R
at

e

0
1
2
3
4
5
6
7
8

Figure 9: Effect of erasure code

Systematic Code with Route Fix

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6
Number of Redundant Packets

S
uc

ce
ss

 R
at

e

0
1
2
3
4
5
6
7
8

Figure 10: Erasure code with route fix

sary. Its gain diminishes quickly above 2 more redundant
packets.
And Figure 10 shows the effect of combining all link-level
retransmission, erasure code, and route fix. With route fix,
even small amount of information redundancy achieves high
reliability.

Overhead information will provide more precise comparison.
Especially in case with route fix, it is hard to see success
rate/overhead tradeoff, and compare relative efficiency: like
which achieve better success rate given same amount of over-
head, or which option require less overhead to achieve given
success rate.

8.3 Erasure Code
Figure 11 shows how much reliability can be gained from
erasure code. Each line in the graph represents how many
additional packets are sent per 8 packets. When there is

Effect of Erasure Code

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2
Raw Loss Rate

Fi
na

l L
os

s 
R

at
e

1
2
4
8
16
64
247

Figure 11: Effect of Erasure Code on Loss Rate

Effect of Systematic Code

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2
Raw Loss Rate

Fi
na

l L
os

s 
R

at
e

1
2
4
8
16
64
247

Figure 12: Effect of Systematic on Code Loss Rate



Encoding Speed

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9

Number of Redundant Codes

Ti
m

e 
(m

s)

Figure 13: Encoding Time

Decoding Speed

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9

Number of Non-Original Message Code

Ti
m

e 
(m

s)

Figure 14: Decoding Time

small amount of redundancy, loss rate provided by erasure
code is higher than raw loss rate. If we can not decode, we
loose everything. So receiving 7 packets is effectively same
as receiving 0 packets. Systematic code is good not only for
saving computation, but also for increasing reliability. By
using systematic code, even if we receive 7 packets, when
3 packets are codes containing original messages, we get
3 packets. Figure 12 shows improvement with systematic
code. Final loss rate is always smaller than raw loss rate.
Figure 11 and 12 are mathematically calculated. In this pa-
per, systematic code is implemented, and all experiments
used systematic code.

Figure 13 shows encoding time. In systematic code, first
8 packets dos not require any computation, they are just
memory copies. Additional packet requires 1.7ms, which is
smaller than transmission time of packet (20ms) by order of
magnitude. Figure 14 shows decoding time. Decoding time
depends on mix of code words as stated previously. Even in

Decoding Time versus Loss Rate

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Loss Rate

Ti
m

e 
(m

s)
Figure 15: Effect of Loss Rate on Decoding Time

Variation in Decoding Time (R = 4)

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Ti
m

e 
(m

s)

Figure 16: Variation in Decoding Time



worst case, it takes less than 30ms. Those times are mea-
sured on real mote. Considering that it takes at least 160ms
to receive 8 packets, we can decode in real time. Based on
this experiment value, we calculated expected amount time
to decode given loss rate in Figure 15. Mix of code words
(how many codes are original messages) determines decod-
ing time. ’how many’ affects decoding time, but ’which’ does
not. This is shown in Figure 16. 30 random cases are pro-
duced, and decoding time is measured. Difference is mostly
within 15

9. CONCLUSION
Link-level retransmission is effective in most combination of
options. Route fix is important to make the loss distribution
less bursty. Especially elimination of long series of correlated
consecutive drops makes erasure code very attractive solu-
tion.
Route fix basically provides flexibility in next-hop choice.
Route fix and erasure code works greatly, but still not enough
to survive bursts.

10. FUTURE WORK
Overhead information will provide more precise comparison.
Especially in case with route fix, it is hard to see success
rate/overhead tradeoff, and compare relative efficiency: like
which achieve better success rate given same amount of over-
head, or which option require less overhead to achieve given
success rate.
End-to-end test is missing. We need to run LRX on Soda
Hall testbed.
Thick path is another possible option. It achieves reliabil-
ity only through information redundancy, and can survive
link failure. Moreover it has low delay to deliver packet.
Downside is that it injects a large amount of packets: it
is multiplication of path length and path thickness. Since
traffic is correlated locally, channel contention will not sig-
nificantly affect whole network. However, in terms of energy
consumption this would be a bad choice. It will be inter-
esting to see tradeoff of success rate, overhead, delay, and
energy consumption.
Some form of congestion control is need. Admission control
would be a good candidate solution.
Initially it looked like that this implementation works as
long as M + N < 2r − 1. In experiments, when M > r
it worked in most cases. But there were cases it failed to
work. Mathematical reasoning of this phenomenon is the
future work. And if we can avoid these cases without ex-
pensive operation, it would be helpful.

11. REFERENCES
[1] http://mathworld.wolfram.com/.

[2] J. Blomer, M. Kalfane, R. Karp, M. Karpinski,
M. Luby, and D. Zuckerman. An xor-based
erasure-resilient coding scheme.

[3] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege.
A digital fountain approach to reliable distribution of
bulk data.

[4] A. Chlipala, J. Hui, and G. Tolle. Deluge: Data
dissemination for network reprogramming at scale.

[5] K. P. Gummadi, R. Gummadi, S. D. Gribble,
S. Ratnasamy, S. Shenker, and I. Stoica. The impact of
dht routing geometry on resilience and proximity.
Proceedings of the ACM SIGCOMM 2003, Aug 2003.

[6] S. Kim, D. Culler, J. Demmel, G. Fenves, S. Glaser,
T. Oberheim, and S. Pakzad. Structure health
monitoring using wireless sensor networks.

[7] P. Maymounkov. Online codes. NYU, Technical Report
TR2002-833, November 2002.

[8] L. Rizzo. Effective erasure codes for reliable computer
communication protocols. ACM Computer
Communication Review, 27(2):24–36, April 1997.

[9] A. Woo, T. Tong, and D. Culler. Taming the
underlying challenges of reliable multihop routing in
sensor networks. ACM Sensys, November 2003.


