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ABSTRACT
Reliable communication in Wireless Sensor Networks is hard
to achieve efficiently using methods in conventional systems
like Internet. End-to-end retransmission is inefficient, or in
some cases impossible. Erasure code is code with which
we can reconstruct m original messages by receiving any m
out of n code words (n > m). Erasure code provides effi-
cient option for achieving reliability. Erasure code based on
Reed-Solomon code is implemented. And further modifica-
tions were made to optimize for resource-constrained Wire-
less Sensor Networks mote. Systematic code is used to in-
crease speed of decoding. Multiple independent code words
are packed into a single packet to reduce the size of code
word, and to reduce memory space and computation time
eventually. Operation lookup table is used for quicker de-
coding. Memory usage and computing time depend on the
size of code word. For most of practical usage in Wireless
Sensor Networks, 4 or 8 bit long code word will be sufficient.
Then moderate amount of memory is used, and computa-
tion is quick with operation table. Redundant information
and flexibility in loss distribution give benefit to convergence
routing, divergence routing (multicast), and point-to-point
routing.
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1. INTRODUCTION
Technology advance as stated in Moores law enabled more
powerful chip with lower power consumption at low-cost.
This enabled small battery-powered device with wireless com-
munication, having computational power strong enough to
sense and actuate environment. Wireless Sensor Networks
(WSN) is a network of those small devices. And Berkeley
mote running TinyOS realized it in a real world.
Wireless Sensor Networks faces new challenges which were
not critical in conventional computing systems. Even though
mobile computing devices like laptop and PDA are also con-

strained by power source, Wireless Sensor Networks (WSN)
have additional challenge for low-power sleep mode, and
quick wakeup to support long life with low duty cycle.
From the perspective of wireless communication, 802.11 Wire-
less LAN and cellular network already handles queer ra-
dio behavior. However they are more focused on asymmet-
ric communication between access point (tower) and mo-
bile node. WSN also involves asymmetric communication
between powerful super-node and normal node. But large
portion of communication involves two normal nodes talk-
ing to each other through multiple other nodes, requiring
real ad-hoc network solution. Moreover, ratio of communi-
cation overhead compared to computational power and en-
ergy source, is more significant than existing systems. WSN
also need to support diverse routing layers: convergence, di-
vergence in addition to point-to-point. Convergence is for-
warding data to one sink, and divergence is spreading data
from one sink like multicast. These two types can be re-
alized using point-to-point, but with substantial penalty to
efficiency. Therefore, WSN support all different routing lay-
ers.
Reliable communication, for which we focus, can not be
achieved efficiently merely by methods used in other sys-
tems. For example, end-to-end retransmission may not per-
form well. In case of convergence, only convergence tree is
maintained, so there is no reverse path to send acknowledge-
ment from root to each leaf. In case of divergence, we will
suffer ACK or NACK flooding.
Moreover, link-level retransmission does not go together well
with end-to-end retransmission. If link-level retransmission
is used, end-to-end delay varies enormously, and estimat-
ing round trip time becomes difficult. Upper bound can
be used, but this introduces another problem. Since up-
per bound is pessimistic and communication is slow, sender
should keep session information for a long time. This solu-
tion is not feasible for motes with small memory. However,
we can not exclude link-level retransmission, because with-
out link-level retransmission, we lose too much efficiency.
Let us assume loss rate of each link is 10%. The probability
to send data and to get acknowledgement successfully from
a node 10 hops away without link-level retransmission, is
12%. It means that 88% of time, all link capacity used to
forward data or acknowledgement will be wasted.

In this harsh condition, WSN can benefit from special en-
coding scheme: erasure code. Using erasure code, we can
reconstruct m original messages with any m out of n code
words. Erasure code relieves constraints on packet loss dis-
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Figure 1: Mechanism of Erasure Code

tribution. In case where we simply duplicate packets, one of
ith packet should be delivered. Otherwise, retransmission
is necessary. With erasure code, any m packets are enough.
Since erasure code does not require reverse path, it easily
increases reliability of convergence routing, where there is
no backward path. And for divergence case like code image
dissemination for network reprogramming, even when each
node is missing different set of packets, any additional pack-
ets will enable every node to reconstruct original message.
However, there also exists challenge in using erasure code.
Since motes in WSN are severely constrained in computa-
tional power, and memory space, we need an efficient imple-
mentation. It turned out that in practical assumption for
typical configuration of mote and operational environment,
we can find sweet spot.
Next section will look at related work. Section 3 introduces
concept and proof of erasure code. And one particular al-
gorithm for erasure code, Reel-Solomon is explained. Then
Section 4 explains additional optimization to adapt erasure
code to resource-constrained WSN. Evaluation and conclu-
sion follow in Section 5, and future work will be discussed
in Section 6.

2. RELATED WORK
There exist diverse algorithms for erasure code which can
be implemented in either software or hardware [6, 2]. [6]
exploits diverse optimizations, from which this work gained
many hints. Rateless code [3, 5] is a class of erasure code
in which arbitrary number of code words can be produced.
However, those works are not optimized for systems with
low capability: not much attention was paid to cases with
extreme space limitation. Work in this paper puts heavy
weight on optimization for node with very limited resources.

In Wireless Sensor Networks, there exist different types of
routings. There is convergence routing [7], which can be
used for collecting data. Deluge is for divergence routing [4],
and program image dissemination is a good example of ap-
plication. There also exists point-to-point routing with ge-
ographical information. We will discuss how all three types
of routing layers can benefit from erasure code in achieving
reliability later in Section 5.

3. ERASURE CODE
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Figure 2: Vandermonde Matrix

Erasure code is code with which we can reconstruct m orig-
inal messages by receiving any m out of n code words (n >
m). If n is sufficiently large compared to the loss rate, we
can achieve high reliability without retransmission. Figure
1 shows high level mechanism of erasure code. A particu-
lar erasure code algorithm called Reed-Solomon code is used.
To explain Reed-Solomon code, linear code will be presented
first, followed by Vandermonde matrix.

3.1 Linear Code
For encoding process, there exists encoding function C(X)
where X is a vector of m messages. Then C(X) will produce
a vector of n code words (n > m). If code has a property
that C(X) + C(Y ) = C(X + Y ), then it is called a linear
code. Linear code can be represented with a matrix A. code
word vector for message vector X is simply AX. Encoding
is matrix-vector multiplication. Decoding is finding X such
that AX = Z for a received code word vector Z. This is
finding solution to linear equation AX = Z. We can see that
A should have m linearly independent rows so that linear
equation has unique solution, and in turn unique message
vector.
This code is very useful, since encoding and decoding are
computationally inexpensive. This is especially attractive
in resource-constrained Wireless Sensor Networks.

3.2 Vandermonde Matrix
There is one more thing we need to look at before Reed-
Solomon code. Vandermonde matrix is a matrix with ele-
ment A(i, j) = xj−1

i where each xi is nonzero and distinct
from each other, as shown in Figure 2. For n by m Vander-
monde matrix (n > m), any set of m rows forms nonsingular
matrix. That is to say, whatever set with m rows we may
choose, rows in the set are linearly independent. Lets define
this property as Property V for future use.

Definition (Property V ): For a n by m (n > m) matrix A,
if any set S of m rows of A form nonsingular matrix such
that all rows in S are linearly independent, then A is said
to have Property V .

We can see that in linear equation AX = Z where A is
Vandermonde matrix, any m rows and corresponding m el-
ements of Z form m by m square matrix and a vector of size
m, where matrix is nonsingular. Then we can uniquely de-
termine X. This sounds somewhat similar to erasure code.
Next subsection will describe Reed-Solomon code, which
uses the same idea.
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Figure 3: High level diagram showing how Reed-
Solomon code works

3.3 Reed-Solomon Code
Basic idea of Reed-Solomon code is producing n equations
with m unknown variables. Then with any m out of n equa-
tions, we can find those m unknowns.
For a given data, let us break down it into m messages
w0, w1, w2, . . . , wm−1. And construct P (X) using these mes-
sages as coefficients such that

P (X) =

m−1∑
i=0

wix
i

And evaluate this polynomial P (X) at n different points
x1, x2, , xn. Then P (x1), P (x2), , P (xn) can be represented
as multiplication of matrix and vector as shown in Figure 3.
Here we can see that matrix A is Vandermonde matrix, W
is a vector of messages, and code words are contained in a
vector AW . If we have any m rows of A and their corre-
sponding P (X) values, we can obtain vector W which con-
tains coefficients of polynomial, which is again the original
messages. Reed-Solomon code can be also used to correct
error. However, in current implementation of TinyOS, each
packet has CRC to detect bit error. We can assume that
there will be no bit error in packet containing code word
(otherwise, it must be dropped at lower layer). Therefore,
error correction is not used in the implementation.

4. MODIFICATION FOR WIRELESS SEN-
SOR NETWORKS

We need more process to bring erasure code to real world
implementation, especially in resource-constrained Wireless
Sensor Networks (WSN). Several methods are used to im-
prove efficiency in mote.

4.1 Extension Field
For efficient use of bits in packet, we use extension field with
base 2. First of all, we need to look at field, and prime field.
We follow definition of mathworld [1]. Field is any set of ele-
ments which satisfies the field axioms for both addition and
multiplication and is commutative division algebra. Field
axioms include commutativity, associativity, ditributivity,
identity, and inverse. An archaic name for a field is rational
domain. The French term for a field is corps and the Ger-
man word is Korper, both meaning ”body.”
A field with a finite number of members is known as a finite
field or Galois field. For a given Galois field of size q, if
q − 1 powers of an element x (x1, x2, . . . , xq−1) produce all
non-zero elements, that element x is called a generator of
the given Galois field.
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Figure 4: Systematic code

Prime field is a Galois field, whose elements are integers in
[0, p− 1], where p is prime. Addition and multiplication are
normal integer addition and multiplication with modulo op-
eration at the end. Prime field always have generator. The
size of prime field is p, and we need dlog2(p)e bits to rep-
resent all elements. Since p is not power of 2, there exists
waste in bit usage. For example, to represent prime field
with prime 11, we need 4 bits with which 16 numbers can
be represented.
Extension field is a Galois field whose elements are integers
in [0, pr − 1]. Extension field can be though as polynomi-
als on primefield(p). Operations follow rules of polynomial
operation with modulo operation at the end. Primitive poly-
nomial is generator of extension field. Interestingly, this set
with polynomial operations stated above, still satisfies prop-
erties of field. Moreover, by setting p = 2, we can fully utilize
bits in message. Property V of Vandermonde matrix still
holds for prime field, and even for extension field!

4.2 Systematic Code
If some part of erasure codes are original messages, when ev-
ery packet in this part arrives we can get original messages
without decoding. Such code is called systematic code. An-
other good property of Vandermonde matrix is that even if
any m rows of n by m (n > m) Vandermonde matrix are
substituted with rows of m by m identity matrix, the new
matrix still have Property V , even for extension field. Fig-
ure 4 shows one possible case.
When we use systematic code in this way, at the encoding
side, we dont need any computation for the portion of code
words containing original messages. This reduces encod-
ing overhead. At the decoding side, when we have all code
words containing original messages, we get messages with-
out any further computation. In this case, we can achieve
huge save in decoding computation (actually no computa-
tion is needed). Systematic code can give benefit even when
we loose some packets. At the decoding side, the more origi-
nal message part we have, the closer decoding matrix would
be to identity matrix, and the quicker decoding process be-
comes. Therefore, if we have most of code words containing
original messages, and some messages constructed by Van-
dermonde matrix, decoding will be very fast.

4.3 Multiple Independent Code Words in a
Packet

If one packet carries one code word, each code word will be
very large. This makes implementation intractable since op-
eration on such a large field requires huge space and time.
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Figure 5: Divide packet into multiple independent
code words

One solution would be using small messages and small code
words. Then, however, payload in a packet gets too small.
By putting multiple independent code words into a packet,
we can fully utilize payload space of a packet without prob-
lems of large code word.
Imagine dividing one big data into t pieces of small data.
Then each data is again divided into m messages, and en-
coded into n code words. We have total of tn code words
to send. Pack ith code words from each independent k data
into a single packet. We either get all ith code words for
k data, or we get nothing. Any m packets will provide m
code words for all k data, and we can reconstruct original k
data. Since all k data have code words with same sequence
set, decoding process is the same: same decoding matrix can
be used. This further enhances decoding efficiency. Figure
5 shows example. Here data is divided into 6 small data
chunks. Each data chunk is divided again to 4 messages.
Messages from each chunk are encoded to 7 code words in-
dependently. Then code words from all data chunks with
same sequence number are packed into the same packet.
The drawback of dividing packet into multiple code words is
the limitation for the number of messages and code words.
The number of messages can not exceed number of bits used
to present message. The number of code words should be
smaller than the size of extension field. For example, if each
code word is 8 bit long, maximum number of messages is
limited to 8, and maximum number of code words is limited
to 255.

4.4 Operation Table
As describe before, extension field is used to efficiently use
packet payload. Operations on extension field are not simply
addition and multiplication combined with modulo opera-
tion. They are polynomial operations with modulo. There-
fore, rather than performing complex computation on the
fly, table is used to lookup result of operation. Addition is
XOR of two numbers, and we dont need table. For multipli-
cation and division operation, exponent and log values are
computed and stored as tables.
Here we need to look at generator. Let the size of extension
field be q = pr, where p is prime. Extension field has gener-

ators. Let one of them be α. For any generator α, when we
keep multiplying α, we can produce all q − 1 non-zero ele-
ments. And then α is produced again starting cycle. That
means

αq mod q = α, αq−1 mod q = 1

Let

x = αkx mod q, y = αky mod q

Exponent and log are defined as follows

exp(kx) = x, log(x) = kx where x, kx ∈ GF (pr)

Then multiplication of xy is

xy mod q = αkxαky mod q = αkx+ky mod q

= αkx+ky mod (q−1) mod q = exp(kx + ky mod (q − 1))

= exp(log(x) + log(y) mod (q − 1))

Inverse of x is

1

x
= α−kx = αq−1−kx = exp(q − 1 − kx)

= exp(q − 1 − log(x))

Therefore, multiplication involves two log table lookups, one
addition, one modulo, and one exponent table lookup. In-
verse involves one log table lookup, one subtraction, and one
exponent table lookup.
These tables consume memory space. However, frequent use
of multiplication operation justifies usage of table. And cur-
rently computation on the fly takes O(size of extension field)
time which grow exponentially with the size of code word.
As we will see in the next section, the memory usage is
moderate when the size of message and code word is small.

5. EVALUATION AND CONCLUSION
In implementing erasure code, it is found that memory space
is more stringent than computational power in Wireless Sen-
sor Networks mote. One reason is that computation/memory
ratio is higher than normal PC. Second reason is that wire-
less communication is slow compared to CPU especially when
operations are done by table lookup.
We can argue that usage of operation table is waste. How-
ever, we are using small messages and code words by divid-
ing packet into multiple independent code words. So op-
eration table is moderate overhead to space. Let r be the
size of code word, and p be the size of packet. For each
operation table (exponent, log), there are 2r elements in the
field, each of size r bits. Space needed for one operation
table is r2r bits. For both exponent and log tables, r2r+1

bits are required. When r is 4, this is 16 bytes. When r
is 8, memory consumption is 512 bytes. But in the case
with r = 8, if memory space is very limited, we can divide
data further to 2 data sets with four messages in each set.
Then we can just use erasure code with r = 4. This process
puts more restriction on loss distribution, and can eventu-
ally decrease effectiveness of erasure code. Tolerating any
6 packet losses provides more robustness than tolerating 3
packet losses from each of two transfers.
For the purpose of tolerating loss, even 4 bit long code word
can survive 73% of loss rate. This would be more than



enough in practice, because communication over channel
with higher than 73% of loss rate will need additional solu-
tion from different perspective like link-level retransmission.
Packet buffer requires rp bits. However, this buffer is un-
avoidable. If we can reconstruct original data with less than
r code words, it means that we can produce r pieces of in-
formation out of less than r pieces of information, which is
impossible.

Erasure code can be used to improve reliability on wireless
sensor networks, where end-to-end retransmission is very ex-
pensive. In case of convergence routing where there is no
backward path, high reliability can easily be achieved. Era-
sure code also can be used in divergence routing like code
dissemination. Let us assume that node 1 has 8 program
images to distribute, and 8 bit long code word is used. As-
sume node 2 is missing image 3 and 6. Node 3 is missing
image 1 and 8. For node 4 image 2 and 7 are missing, for
node 5 image 4 and 5. With just retransmission, node 2, 3,
4, and 5 will send request for missing images. Then node
1 will send those missing images. This process involves 12
packets: 4 for requests, and 8 for missing images. Using era-
sure code, we only need to send 2 additional packets, and
everyone will get every image. Even if some of nodes are still
missing one image, which can be potentially different from
one to another, one additional packet is enough to cure all.
This is an improvement in the order of magnitude.

6. FUTURE WORK
Initially it looked like that this implementation works as long
as M + N < 2r − 1. In experiments, when M > r it worked
in most cases. But there were cases it failed to work. Math-
ematical reasoning of this phenomenon is the future work.
And if we can avoid these cases without expensive operation,
it would be helpful. If we can have larger M , as discussed
in Section 5 tolerating any 6 packet losses provides more
robustness than tolerating 3 packet losses from each of two
transfers.
In an experiment for characterizing loss behavior of WSN,
it is found that stale routing table after link failure is a sig-
nificant problem. It is critical not only because it is too
frequent, but also because it is hard to cure with conven-
tional methods used in Internet. To reduce delay between
link failure and routing table update, interval between con-
trol packets for probing link quality should decrease, which
means more traffic overhead for finer-grain update. In case
of internet, link failure is not very frequent, therefore this is
not a significant problem. However, in WSN space or wire-
less network environment in general, link failure is quite fre-
quent.
In case of stale routing table following link failure, end-to-
end retransmission is not useful, since packets will follow the
same failed link, just leading to loss. Even erasure code will
not work well in this case. Correlated failure will prohibit
delivering even M code words. It seems that we need fix
routing table after some number of link-level transmission
fails. One method would be forwarding to alternative next
hop.
There is another method to overcome link failure with stale
routing table through redundancy. Rather than taking a sin-
gle path, we can forward through a path with some width.
Unless all links across the path fail, forwarding will succeed.
This approach has a drawback also. Because we are dupli-

cating path, the number of messages sent is multiplied by
the width of path.
Encoding time, and decoding time evaluation need be per-
formed on real mote. Since systematic code is used, decod-
ing time depends on which set of code words it received.
The ratio of code words containing original messages, and
its effect on decoding time will be interesting. And loss rate,
and average decoding time graph will be also good.
Code can be found at
http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x
/contrib/GGB/apps/ErasureCode
Future updates will be added.
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